
Xingtao Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3490122/publications.pdf Version: 2024-02-01

Χινιστλο Χιι

#	Article	IF	CITATIONS
1	Three-Dimensional Networked Metal–Organic Frameworks with Conductive Polypyrrole Tubes for Flexible Supercapacitors. ACS Applied Materials & Interfaces, 2017, 9, 38737-38744.	4.0	364
2	Review on carbon-based composite materials for capacitive deionization. RSC Advances, 2015, 5, 15205-15225.	1.7	319
3	Graphene Nanoarchitectonics: Recent Advances in Grapheneâ€Based Electrocatalysts for Hydrogen Evolution Reaction. Advanced Materials, 2019, 31, e1903415.	11.1	289
4	Hierarchical hybrids with microporous carbon spheres decorated three-dimensional graphene frameworks for capacitive applications in supercapacitor and deionization. Electrochimica Acta, 2016, 193, 88-95.	2.6	285
5	Assembly of Hollow Carbon Nanospheres on Graphene Nanosheets and Creation of Iron–Nitrogen-Doped Porous Carbon for Oxygen Reduction. ACS Nano, 2018, 12, 5674-5683.	7.3	277
6	Nanoarchitectured metal–organic framework/polypyrrole hybrids for brackish water desalination using capacitive deionization. Materials Horizons, 2019, 6, 1433-1437.	6.4	241
7	Capacitive deionization using nitrogen-doped mesostructured carbons for highly efficient brackish water desalination. Chemical Engineering Journal, 2019, 362, 887-896.	6.6	234
8	Phosphorus-doped 3D carbon nanofiber aerogels derived from bacterial-cellulose for highly-efficient capacitive deionization. Carbon, 2018, 130, 377-383.	5.4	224
9	Core-shell motif construction: Highly graphitic nitrogen-doped porous carbon electrocatalysts using MOF-derived carbon@COF heterostructures as sacrificial templates. Chemical Engineering Journal, 2020, 396, 125154.	6.6	223
10	Solar-Powered Sustainable Water Production: State-of-the-Art Technologies for Sunlight–Energy–Water Nexus. ACS Nano, 2021, 15, 12535-12566.	7.3	220
11	Unprecedented capacitive deionization performance of interconnected iron–nitrogen-doped carbon tubes in oxygenated saline water. Materials Horizons, 2020, 7, 1404-1412.	6.4	199
12	Metal–organic framework-derived porous carbon polyhedra for highly efficient capacitive deionization. Chemical Communications, 2015, 51, 12020-12023.	2.2	196
13	Ultrahigh capacitive deionization performance by 3D interconnected MOF-derived nitrogen-doped carbon tubes. Chemical Engineering Journal, 2020, 390, 124493.	6.6	191
14	Subâ€50 nm Iron–Nitrogenâ€Doped Hollow Carbon Sphereâ€Encapsulated Iron Carbide Nanoparticles as Efficient Oxygen Reduction Catalysts. Advanced Science, 2018, 5, 1800120.	5.6	187
15	Carbon-incorporated Janus-type Ni ₂ P/Ni hollow spheres for high performance hybrid supercapacitors. Journal of Materials Chemistry A, 2017, 5, 19054-19061.	5.2	183
16	Facile synthesis of novel graphene sponge for high performance capacitive deionization. Scientific Reports, 2015, 5, 8458.	1.6	174
17	Novel nitrogen doped graphene sponge with ultrahigh capacitive deionization performance. Scientific Reports, 2015, 5, 11225.	1.6	165
18	Design of pomegranate-like clusters with NiS ₂ nanoparticles anchored on nitrogen-doped porous carbon for improved sodium ion storage performance. Journal of Materials Chemistry A, 2018, 6, 6595-6605.	5.2	159

Χινστάο Χυ

#	Article	IF	CITATIONS
19	Porous carbon spheres via microwave-assisted synthesis for capacitive deionization. Electrochimica Acta, 2015, 151, 489-496.	2.6	151
20	Extraordinary capacitive deionization performance of highly-ordered mesoporous carbon nano-polyhedra for brackish water desalination. Environmental Science: Nano, 2019, 6, 981-989.	2.2	150
21	KOH-Activated Hollow ZIF-8 Derived Porous Carbon: Nanoarchitectured Control for Upgraded Capacitive Deionization and Supercapacitor. ACS Applied Materials & Interfaces, 2021, 13, 52034-52043.	4.0	149
22	Carbon-incorporated Fe ₃ O ₄ nanoflakes: high-performance faradaic materials for hybrid capacitive deionization and supercapacitors. Materials Chemistry Frontiers, 2021, 5, 3480-3488.	3.2	147
23	Twoâ€Dimensional MXeneâ€Polymer Heterostructure with Ordered Inâ€Plane Mesochannels for Highâ€Performance Capacitive Deionization. Angewandte Chemie - International Edition, 2021, 60, 26528-26534.	7.2	147
24	Graphene–carbon 2D heterostructures with hierarchically-porous P,N-doped layered architecture for capacitive deionization. Chemical Science, 2021, 12, 10334-10340.	3.7	146
25	Ti3C2 MXenes-derived NaTi2(PO4)3/MXene nanohybrid for fast and efficient hybrid capacitive deionization performance. Chemical Engineering Journal, 2021, 407, 127148.	6.6	140
26	Enhanced capacitive deionization performance of graphene by nitrogen doping. Journal of Colloid and Interface Science, 2015, 445, 143-150.	5.0	139
27	Highly efficient photocatalytic degradation of different hazardous contaminants by Caln2S4-Ti3C2Tx Schottky heterojunction: An experimental and mechanism study. Chemical Engineering Journal, 2021, 421, 127838.	6.6	138
28	Super-stretchable, elastic and recoverable ionic conductive hydrogel for wireless wearable, stretchable sensor. Journal of Materials Chemistry A, 2020, 8, 10291-10300.	5.2	130
29	Direct Z-scheme CuInS2/Bi2MoO6 heterostructure for enhanced photocatalytic degradation of tetracycline under visible light. Journal of Hazardous Materials, 2021, 415, 125591.	6.5	130
30	Nanoengineering Metal–Organic Frameworkâ€Based Materials for Use in Electrochemical CO ₂ Reduction Reactions. Small, 2021, 17, e2006590.	5.2	127
31	MXene Nanoarchitectonics: Defectâ€Engineered 2D MXenes towards Enhanced Electrochemical Water Splitting. Advanced Energy Materials, 2022, 12, .	10.2	125
32	Core–Shell MOF@COF Motif Hybridization: Selectively Functionalized Precursors for Titanium Dioxide Nanoparticle-Embedded Nitrogen-Rich Carbon Architectures with Superior Capacitive Deionization Performance. Chemistry of Materials, 2021, 33, 1657-1666.	3.2	121
33	Enhanced desalination efficiency in modified membrane capacitive deionization by introducing ion-exchange polymers in carbon nanotubes electrodes. Electrochimica Acta, 2014, 130, 619-624.	2.6	118
34	Metal–organic framework-engaged formation of a hierarchical hybrid with carbon nanotube inserted porous carbon polyhedra for highly efficient capacitive deionization. Journal of Materials Chemistry A, 2016, 4, 5467-5473.	5.2	117
35	Significantly improved stability of hybrid capacitive deionization using nickel hexacyanoferrate/reduced graphene oxide cathode at low voltage operation. Desalination, 2019, 468, 114078.	4.0	112
36	Nanoarchitectonics from 2D to 3D: MXenes-derived nitrogen-doped 3D nanofibrous architecture for extraordinarily-fast capacitive deionization. Chemical Engineering Journal, 2022, 430, 133161.	6.6	109

Χινςταό Χυ

#	Article	IF	CITATIONS
37	Metal–Organic Framework-Derived Graphene Mesh: a Robust Scaffold for Highly Exposed Fe–N ₄ Active Sites toward an Excellent Oxygen Reduction Catalyst in Acid Media. Journal of the American Chemical Society, 2022, 144, 9280-9291.	6.6	108
38	Highly efficient water desalination by capacitive deionization on biomass-derived porous carbon nanoflakes. Separation and Purification Technology, 2021, 256, 117771.	3.9	106
39	Borophene: Two-dimensional Boron Monolayer: Synthesis, Properties, and Potential Applications. Chemical Reviews, 2022, 122, 1000-1051.	23.0	106
40	MOF-on-MOF nanoarchitectures for selectively functionalized nitrogen-doped carbon-graphitic carbon/carbon nanotubes heterostructure with high capacitive deionization performance. Nano Energy, 2022, 97, 107146.	8.2	106
41	High performance capacitive deionization electrodes based on ultrathin nitrogen-doped carbon/graphene nano-sandwiches. Chemical Communications, 2017, 53, 10784-10787.	2.2	105
42	In-situ construction of g-C3N4/Mo2CTx hybrid for superior lithium storage with significantly improved Coulombic efficiency and cycling stability. Chemical Engineering Journal, 2021, 410, 128349.	6.6	105
43	From metal-organic frameworks to porous carbons: A promising strategy to prepare high-performance electrode materials for capacitive deionization. Carbon, 2016, 108, 433-439.	5.4	104
44	Recent Advances in Faradic Electrochemical Deionization: System Architectures <i>versus</i> Electrode Materials. ACS Nano, 2021, 15, 13924-13942.	7.3	102
45	Nanoarchitectonics of MXene/semiconductor heterojunctions toward artificial photosynthesis via photocatalytic CO2 reduction. Coordination Chemistry Reviews, 2022, 459, 214440.	9.5	97
46	Effect of the cavitation generation unit structure on the performance of an advanced hydrodynamic cavitation reactor for process intensifications. Chemical Engineering Journal, 2021, 412, 128600.	6.6	92
47	Rational design and fabrication of graphene/carbon nanotubes hybrid sponge for high-performance capacitive deionization. Journal of Materials Chemistry A, 2015, 3, 13418-13425.	5.2	90
48	Self-assembled 3D flower-like Fe ₃ O ₄ /C architecture with superior lithium ion storage performance. Journal of Materials Chemistry A, 2018, 6, 24940-24948.	5.2	88
49	Three-Dimensional Nanoarchitecture of Carbon Nanotube-Interwoven Metal–Organic Frameworks for Capacitive Deionization of Saline Water. ACS Sustainable Chemistry and Engineering, 2019, 7, 13949-13954.	3.2	88
50	Gram-Scale production of Cu3P-Cu2O Janus nanoparticles into nitrogen and phosphorous doped porous carbon framework as bifunctional electrocatalysts for overall water splitting. Chemical Engineering Journal, 2022, 427, 130946.	6.6	88
51	Heterointerface optimization in a covalent organic framework-on-MXene for high-performance capacitive deionization of oxygenated saline water. Materials Horizons, 2022, 9, 1708-1716.	6.4	82
52	Synergistic conversion and removal of total Cr from aqueous solution by photocatalysis and capacitive deionization. Chemical Engineering Journal, 2018, 337, 398-404.	6.6	79
53	Assembling well-arranged covalent organic frameworks on MOF-derived graphitic carbon for remarkable formaldehyde sensing. Nanoscale, 2020, 12, 15611-15619.	2.8	78
54	Programmed design of selectively-functionalized wood aerogel: Affordable and mildew-resistant solar-driven evaporator. Nano Energy, 2021, 87, 106146.	8.2	77

Χινστάο Χυ

#	Article	IF	CITATIONS
55	In situ construction of carbon nanotubes/nitrogen-doped carbon polyhedra hybrids for supercapacitors. Energy Storage Materials, 2016, 5, 132-138.	9.5	76
56	Sn doped TiO2 nanotube with oxygen vacancy for highly efficient visible light photocatalysis. Journal of Alloys and Compounds, 2016, 679, 454-462.	2.8	75
57	Facile dual doping strategy <i>via</i> carbonization of covalent organic frameworks to prepare hierarchically porous carbon spheres for membrane capacitive deionization. Chemical Communications, 2018, 54, 14009-14012.	2.2	74
58	Nitrogen-doped carbon nanorods with excellent capacitive deionization ability. Journal of Materials Chemistry A, 2015, 3, 17304-17311.	5.2	73
59	Nitrogen-doped nanostructured carbons: A new material horizon for water desalination by capacitive deionization. EnergyChem, 2020, 2, 100043.	10.1	73
60	Metal-organic frameworks derived cake-like anatase/rutile mixed phase TiO2 for highly efficient photocatalysis. Journal of Alloys and Compounds, 2017, 690, 640-646.	2.8	71
61	Ultrahigh Desalinization Performance of Asymmetric Flow-Electrode Capacitive Deionization Device with an Improved Operation Voltage of 1.8 V. ACS Sustainable Chemistry and Engineering, 2017, 5, 189-195.	3.2	70
62	Micro-/mesoporous carbon nanofibers embedded with ordered carbon for flexible supercapacitors. Electrochimica Acta, 2018, 271, 591-598.	2.6	70
63	Reduced graphene oxide/carbon nanotubes sponge: A new high capacity and long life anode material for sodium-ion batteries. Journal of Power Sources, 2016, 316, 132-138.	4.0	69
64	Ultra-durable and highly-efficient hybrid capacitive deionization by MXene confined MoS2 heterostructure. Desalination, 2022, 528, 115616.	4.0	69
65	Design and fabrication of mesoporous graphene via carbothermal reaction for highly efficient capacitive deionization. Electrochimica Acta, 2016, 188, 406-413.	2.6	68
66	Insights into the storage mechanism of 3D nanoflower-like V3S4 anode in sodium-ion batteries. Chemical Engineering Journal, 2022, 427, 130936.	6.6	67
67	1D-2D hybridization: Nanoarchitectonics for grain boundary-rich platinum nanowires coupled with MXene nanosheets as efficient methanol oxidation electrocatalysts. Chemical Engineering Journal, 2022, 450, 137932.	6.6	66
68	Nanosized Rh grown on single-walled carbon nanohorns for efficient methanol oxidation reaction. Rare Metals, 2022, 41, 2108-2117.	3.6	64
69	Sorghum biomass-derived porous carbon electrodes for capacitive deionization and energy storage. Microporous and Mesoporous Materials, 2021, 312, 110757.	2.2	63
70	Embedding Metal–Organic Frameworks for the Design of Flexible Hybrid Supercapacitors by Electrospinning: Synthesis of Highly Graphitized Carbon Nanofibers Containing Metal Oxide Nanoparticles. Small Structures, 2022, 3, .	6.9	61
71	Nitrogen-doped electrospun reduced graphene oxide–carbon nanofiber composite for capacitive deionization. RSC Advances, 2015, 5, 34117-34124.	1.7	59
72	Enhanced sodium storage property of sodium vanadium phosphate via simultaneous carbon coating and Nb5+ doping. Chemical Engineering Journal, 2020, 386, 123953.	6.6	59

Χινςταό Χυ

#	Article	IF	CITATIONS
73	Ferroferric oxide@titanium carbide MXene heterostructure with enhanced sodium storage ability for efficient hybrid capacitive deionization. Desalination, 2022, 522, 115420.	4.0	58
74	Carbon spheres with hierarchical micro/mesopores for water desalination by capacitive deionization. Journal of Materials Chemistry A, 2016, 4, 16094-16100.	5.2	56
75	Carbon aerogels electrode with reduced graphene oxide additive for capacitive deionization with enhanced performance. Inorganic Chemistry Frontiers, 2014, 1, 249.	3.0	55
76	Novel cake-like N-doped anatase/rutile mixed phase TiO2 derived from metal-organic frameworks for visible light photocatalysis. Ceramics International, 2017, 43, 835-840.	2.3	54
77	Prussian blue analogue derived cobalt–nickel phosphide/carbon nanotube composite as electrocatalyst for efficient and stable hydrogen evolution reaction in wide-pH environment. Journal of Colloid and Interface Science, 2022, 616, 210-220.	5.0	49
78	Controlled synthesis of NaTi2(PO4)3/Carbon composite derived from Metal-organic-frameworks as highly-efficient electrodes for hybrid capacitive deionization. Separation and Purification Technology, 2021, 278, 119565.	3.9	46
79	Thermal conversion of polypyrrole nanotubes to nitrogen-doped carbon nanotubes for efficient water desalination using membrane capacitive deionization. Separation and Purification Technology, 2020, 235, 116196.	3.9	45
80	Flexible nitrogen-doped carbon heteroarchitecture derived from ZIF-8/ZIF-67 hybrid coating on cotton biomass waste with high supercapacitive properties. Microporous and Mesoporous Materials, 2020, 303, 110257.	2.2	43
81	Phosphorus- and Nitrogen-Doped Carbon Nanosheets Constructed with Monolayered Mesoporous Architectures. Chemistry of Materials, 2020, 32, 4248-4256.	3.2	41
82	Eliminating tetracycline antibiotics matrix via photoactivated sulfate radical-based advanced oxidation process over the immobilized MIL-88A: Batch and continuous experiments. Chemical Engineering Journal, 2022, 431, 133213.	6.6	39
83	Flexible organohydrogel ionic skin with Ultra-Low temperature freezing resistance and Ultra-Durable moisture retention. Journal of Colloid and Interface Science, 2022, 608, 396-404.	5.0	37
84	N-doped carbon@Cu core–shell nanostructure with nearly full solar spectrum absorption and enhanced solar evaporation efficiency. Journal of Materials Chemistry A, 2022, 10, 9575-9581.	5.2	37
85	Nanoarchitectonics of low-dimensional metal-organic frameworks toward photo/electrochemical CO2 reduction reactions. Journal of CO2 Utilization, 2022, 57, 101883.	3.3	36
86	Enhanced desalination performance of anion-exchange membrane capacitive deionization via effectively utilizing cathode oxidation. Desalination, 2018, 443, 221-227.	4.0	35
87	Nanoarchitectonics of Metal–Organic Frameworks for Capacitive Deionization via Controlled Pyrolyzed Approaches. Small, 2022, 18, e2102477.	5.2	35
88	Twoâ€Dimensional MXeneâ€Polymer Heterostructure with Ordered Inâ€Plane Mesochannels for Highâ€Performance Capacitive Deionization. Angewandte Chemie, 2021, 133, 26732-26738.	1.6	35
89	Chloride pre-intercalated CoFe-layered double hydroxide as chloride ion capturing electrode for capacitive deionization. Chemical Engineering Journal, 2022, 433, 133578.	6.6	35
90	Capacitive neutralization deionization with flow electrodes. Electrochimica Acta, 2016, 216, 211-218.	2.6	34

Χινςταό Χυ

#	Article	IF	CITATIONS
91	Controlled synthesis of mesoporous nitrogen-doped carbons with highly ordered two-dimensional hexagonal mesostructures and their chemical activation. Nanoscale, 2018, 10, 12398-12406.	2.8	32
92	Nanopatterned metal–organic framework electrodes with improved capacitive deionization properties for highly efficient water desalination. Separation and Purification Technology, 2020, 234, 116124.	3.9	32
93	Tailoring the Structure of Chitosan-Based Porous Carbon Nanofiber Architectures toward Efficient Capacitive Charge Storage and Capacitive Deionization. ACS Applied Materials & Interfaces, 2022, 14, 4004-4021.	4.0	31
94	Shuttleâ€like Porous Carbon Rods from Carbonized Metal–Organic Frameworks for Highâ€Performance Capacitive Deionization. ChemElectroChem, 2016, 3, 993-998.	1.7	30
95	Light-conversion phosphor nanoarchitectonics for improved light harvesting in sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2021, 47, 100404.	5.6	29
96	Enhanced energy storage of aqueous zinc-carbon hybrid supercapacitors via employing alkaline medium and B, N dual doped carbon cathode. Journal of Colloid and Interface Science, 2021, 599, 556-565.	5.0	26
97	Formation of Ag Nanoparticle-Doped Foam-like Polymer Films at the Liquid–Liquid Interface. Journal of Physical Chemistry B, 2011, 115, 11113-11118.	1.2	25
98	High-Performance Capacitive Deionization by Lignocellulose-Derived Eco-Friendly Porous Carbon Materials. Bulletin of the Chemical Society of Japan, 2020, 93, 1014-1019.	2.0	25
99	Carbon nanorods derived from natural based nanocrystalline cellulose for highly efficient capacitive deionization. Journal of Materials Chemistry A, 2014, 2, 20966-20972.	5.2	24
100	Synthesis of Multipleâ€Twinned Pd Nanoparticles Anchored on Graphitic Carbon Nanosheets for Use as Highlyâ€Active Multifunctional Electrocatalyst in Formic Acid and Methanol Oxidation Reactions. Advanced Materials Interfaces, 2020, 7, 2000142.	1.9	24
101	One-dimensional core–shell motif nanowires with chemically-bonded transition metal sulfide-carbon heterostructures for efficient sodium-ion storage. Chemical Science, 2021, 12, 15054-15060.	3.7	23
102	Nitrogen-doped carbon spheres: A new high-energy-density and long-life pseudo-capacitive electrode material for electrochemical flow capacitor. Journal of Colloid and Interface Science, 2017, 491, 161-166.	5.0	20
103	Nitrogenization of Biomass-Derived Porous Carbon Microtubes Promotes Capacitive Deionization Performance. Bulletin of the Chemical Society of Japan, 2021, 94, 1645-1650.	2.0	19
104	Ultra-durable, multi-template molecularly imprinted polymers for ultrasensitive monitoring and multicomponent quantification of trace sulfa antibiotics. Journal of Materials Chemistry B, 2021, 9, 3192-3199.	2.9	18
105	Novel Interlayer on the Separator with the Cr ₃ C ₂ Compound as a Robust Polysulfide Anchor for Lithium–Sulfur Batteries. Industrial & Engineering Chemistry Research, 2020, 59, 7538-7545.	1.8	16
106	MoS ₂ nanosheets with expanded interlayer spacing for ultra-stable aqueous Mg-ion hybrid supercapacitor. Inorganic Chemistry Frontiers, 2022, 9, 1666-1673.	3.0	16
107	Polyaniline coated MOF-derived Mn2O3 nanorods for efficient hybrid capacitive deionization. Environmental Research, 2022, 212, 113331.	3.7	16
108	Enhanced cycling stability of capacitive deionization via effectively inhibiting H2O2 formation: The role of nitrogen dopants. Journal of Electroanalytical Chemistry, 2019, 855, 113488.	1.9	15

Χινςτάο Χυ

#	Article	IF	CITATIONS
109	Magnetic-Electrospinning Synthesis of γ-Fe2O3 Nanoparticle–Embedded Flexible Nanofibrous Films for Electromagnetic Shielding. Polymers, 2020, 12, 695.	2.0	15
110	Multifunctional wearable thermal management textile fabricated by one-step sputtering. Nano Today, 2022, 45, 101526.	6.2	15
111	Selection of Carbon Electrode Materials. Interface Science and Technology, 2018, , 65-83.	1.6	12
112	Ultrafine self-N-doped porous carbon nanofibers with hierarchical pore structure utilizing a biobased chitosan precursor. International Journal of Biological Macromolecules, 2021, 182, 445-454.	3.6	12
113	Modification of Metal-Organic Framework-Derived Nanocarbons for Enhanced Capacitive Deionization Performance: A Mini-Review. Frontiers in Chemistry, 2020, 8, 575350.	1.8	11
114	Cu-based MOF-derived architecture with Cu/Cu2O nanospheres anchored on porous carbon nanosheets for efficient capacitive deionization. Environmental Research, 2022, 210, 112909.	3.7	11
115	In situ constructed <scp>Ti₃C₂T_x MXene</scp> /polypyrrole composite with enhanced sodium storage capacity for efficient hybrid capacitive deionization. Journal of Polymer Science, 2022, 60, 3035-3042.	2.0	11
116	Unique self-assembly behavior of a triblock copolymer and fabrication of catalytically active gold nanoparticle/polymer thin films at the liquid/liquid interface. Materials Chemistry and Physics, 2014, 146, 88-98.	2.0	9
117	Electrosorption of LiCl in different solvents by carbon nanotube film electrodes. RSC Advances, 2013, 3, 16932.	1.7	5
118	Response to Comment on "Ultrahigh Desalinization Performance of Asymmetric Flow-Electrode Capacitive Deionization Device with an Improved Operation Voltage of 1.8 V― ACS Sustainable Chemistry and Engineering, 2017, 5, 2037-2038.	3.2	0