
Justyna P Zwolak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3490071/publications.pdf Version: 2024-02-01

ΙΙΙSTYNA Ρ 7ωριακ

#	Article	IF	CITATIONS
1	Theoretical Bounds on Data Requirements for the Ray-Based Classification. SN Computer Science, 2022, 3, 1.	3.6	3
2	Toward Robust Autotuning of Noisy Quantum dot Devices. Physical Review Applied, 2022, 17, .	3.8	11
3	Combining machine learning with physics: A framework for tracking and sorting multiple dark solitons. Physical Review Research, 2022, 4, .	3.6	3
4	Ray-Based Framework for State Identification in Quantum Dot Devices. PRX Quantum, 2021, 2, .	9.2	9
5	Machine-learning enhanced dark soliton detection in Bose–Einstein condensates. Machine Learning: Science and Technology, 2021, 2, 035020.	5.0	13
6	Autotuning of Double-Dot Devices <i>In Situ</i> with Machine Learning. Physical Review Applied, 2020, 13, .	3.8	38
7	Machine learning techniques for state recognition and auto-tuning in quantum dots. Npj Quantum Information, 2019, 5, .	6.7	53
8	Linking engagement and performance: The social network analysis perspective. Physical Review Physics Education Research, 2019, 15, .	2.9	25
9	Isolating approaches: How middle-division physics students coordinate forms and representations in complex algebra. Physical Review Physics Education Research, 2019, 15, .	2.9	1
10	Practitioner's guide to social network analysis: Examining physics anxiety in an active-learning setting. Physical Review Physics Education Research, 2019, 15, .	2.9	14
11	QFlow lite dataset: A machine-learning approach to the charge states in quantum dot experiments. PLoS ONE, 2018, 13, e0205844.	2.5	17
12	Understanding the development of interest and self-efficacy in active-learning undergraduate physics courses. International Journal of Science Education, 2018, 40, 1587-1605.	1.9	21
13	Educational commitment and social networking: The power of informal networks. Physical Review Physics Education Research, 2018, 14, .	2.9	19
14	Students' network integration as a predictor of persistence in introductory physics courses. Physical Review Physics Education Research, 2017, 13, .	2.9	41
15	Beyond performance metrics: Examining a decrease in students' physics self-efficacy through a social networks lens. Physical Review Physics Education Research, 2016, 12, .	2.9	51
16	Assessing student reasoning in upper-division electricity and magnetism at Oregon State University. Physical Review Physics Education Research, 2015, 11, .	1.7	9
17	Recurrent construction of optimal entanglement witnesses for2N-qubit systems. Physical Review A, 2014, 89, .	2.5	5
18	Stability of Frustration-Free Hamiltonians. Communications in Mathematical Physics, 2013, 322, 277-302.	2.2	109

JUSTYNA P ZWOLAK

#	Article	IF	CITATIONS
19	New Tools for Investigating Positive Maps in Matrix Algebras. Reports on Mathematical Physics, 2013, 71, 163-175.	0.8	7
20	Understanding Centrality: Investigating Student Outcomes within a Classroom Social Network. , 0, , .		2
21	Re-thinking the Rubric for Grading the CUE: The Superposition Principle. , 0, , .		1
22	Revealing Differences Between Curricula Using the Colorado Upper-Division Electrostatics Diagnostic. , 0, , .		1
23	Student difficulties with complex numbers. , 0, , .		1
24	The impact of social integration on student persistence in introductory Modeling Instruction courses. , 0, , .		1
25	Physics Major Engagement and Persistence: A Phenomenography Interview Study. , 0, , .		1
26	Using Social Network Analysis on classroom video data. , 0, , .		0
27	Student perceptions of the value of out-of-class interactions: Attitudes vs. Practice. , 0, , .		0
28	Studying Community Development: A Network Analytical Approach. , 0, , .		0