Silvia Licoccia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3489827/publications.pdf

Version: 2024-02-01

201385 205818 2,367 66 27 48 citations h-index g-index papers 66 66 66 2790 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Looking for Minor Phenolic Compounds in Extra Virgin Olive Oils Using Neutron and Raman Spectroscopies. Antioxidants, 2021, 10, 643.	2.2	5
2	Redox-active coordination polymers as bifunctional electrolytes in slurry-based aqueous batteries at neutral pH. Journal of Electroanalytical Chemistry, 2021, 895, 115442.	1.9	4
3	Novel Composite Fuel Electrode for CO ₂ /CO-RSOCs. Journal of the Electrochemical Society, 2021, 168, 104507.	1.3	7
4	Pd-doped perovskite-based SOFC anodes for biogas. Journal of Solid State Electrochemistry, 2020, 24, 93-100.	1.2	11
5	Electrochemical performance and stability of LSFMn+NiSDC anode in dry methane. Electrochimica Acta, 2020, 362, 137116.	2.6	16
6	Nickel-Based Structured Catalysts for Indirect Internal Reforming of Methane. Applied Sciences (Switzerland), 2020, 10, 3083.	1.3	5
7	The role of manganese substitution on the redox behavior of La0.6Sr0.4Fe0.8Mn0.2O3-δ. Journal of the European Ceramic Society, 2020, 40, 4076-4083.	2.8	20
8	Lithium ion storage in 1D and 2D redox active metal-organic frameworks. Electrochimica Acta, 2020, 341, 136063.	2.6	6
9	Effect of Active Site Poisoning on Ironâ^'Nitrogenâ^'Carbon Platinumâ€Groupâ€Metalâ€Free Oxygen Reduction Reaction Catalysts Operating in Neutral Media: A Rotating Disk Electrode Study. ChemElectroChem, 2020, 7, 3044-3055.	1.7	19
10	Composition―Nanostructure Steered Performance Predictions in Steel Wires. Nanomaterials, 2019, 9, 1119.	1.9	15
11	Investigating the factors that influence resistance rise of PIM-1 membranes in nonaqueous electrolytes. Electrochemistry Communications, 2019, 107, 106530.	2.3	11
12	A redox stable Pd-doped perovskite for SOFC applications. Journal of Materials Chemistry A, 2019, 7, 5344-5352.	5.2	33
13	Pd-doped lanthanum ferrites for symmetric solid oxide fuel cells (SSOFCs). Materialia, 2019, 8, 100460.	1.3	8
14	Bioarchaeological approach to the study of the medieval population of Santa Severa (Rome, 7th–15th) Tj ETQq	10 0 0 rgB1	Г/Qverlock 1
15	MnOx-based electrocatalysts for enhanced oxygen reduction in microbial fuel cell air cathodes. Journal of Power Sources, 2018, 390, 45-53.	4.0	64
16	Oxygen Reduction Reaction Electrocatalysts Derived from Iron Salt and Benzimidazole and Aminobenzimidazole Precursors and Their Application in Microbial Fuel Cell Cathodes. ACS Applied Energy Materials, 2018, 1, 5755-5765.	2.5	29
17	Lanthanum chromite based composite anodes for dry reforming of methane. International Journal of Hydrogen Energy, 2018, 43, 14742-14750.	3.8	33
18	Highly ion selective hydrocarbon-based membranes containing sulfonated hypercrosslinked polystyrene nanoparticles for vanadium redox flow batteries. Journal of Membrane Science, 2018, 563, 552-560.	4.1	26

#	Article	IF	CITATIONS
19	Graphene oxide nanoplatforms to enhance catalytic performance of iron phthalocyanine for oxygen reduction reaction in bioelectrochemical systems. Journal of Power Sources, 2017, 356, 381-388.	4.0	7 5
20	Design of Iron(II) Phthalocyanineâ€Derived Oxygen Reduction Electrocatalysts for Highâ€Powerâ€Density Microbial Fuel Cells. ChemSusChem, 2017, 10, 3243-3251.	3.6	67
21	Ni supported on \hat{I}^3 -Al 2 O 3 promoted by Ru for the dry reforming of methane in packed and monolithic reactors. Fuel Processing Technology, 2017, 158, 130-140.	3.7	77
22	Compositional studies of functional orthodontic archwires using prompt-gamma activation analysis at a pulsed neutron source. Journal of Analytical Atomic Spectrometry, 2017, 32, 1420-1427.	1.6	14
23	Poly(phenylene sulfide sulfone) based membranes with improved stability for vanadium redox flow batteries. Journal of Materials Chemistry A, 2017, 5, 18845-18853.	5.2	23
24	Orthodontic archwire composition and phase analyses by neutron spectroscopy. Dental Materials Journal, 2017, 36, 282-288.	0.8	15
25	Iron–nitrogen-functionalized carbon as efficient oxygen reduction reaction electrocatalyst in microbial fuel cells. International Journal of Hydrogen Energy, 2016, 41, 19637-19644.	3.8	47
26	Enhancement of proton mobility and mitigation of methanol crossover in sPEEK fuel cells by an organically modified titania nanofiller. Journal of Solid State Electrochemistry, 2016, 20, 1585-1598.	1.2	30
27	Ni and Ni-Co La0.8Sr0.2Ga0.8Mg0.2O3â^'Î' infiltrated cells in H2and CH4/CO2 mixture. Applied Catalysis B: Environmental, 2016, 191, 1-7.	10.8	15
28	Iron/Polyindole-based Electrocatalysts to Enhance Oxygen Reduction in Microbial Fuel Cells. Electrochimica Acta, 2016, 190, 388-395.	2.6	101
29	Tuning Structural Changes in Glucose Oxidase for Enzyme Fuel Cell Applications. ACS Applied Materials & Samp; Interfaces, 2015, 7, 28311-28318.	4.0	11
30	Organically functionalized titanium oxide/Nafion composite proton exchange membranes for fuel cells applications. Journal of Power Sources, 2014, 248, 1127-1132.	4.0	65
31	Effect of filler surface functionalization on the performance of Nafion/Titanium oxide composite membranes. Electrochimica Acta, 2014, 147, 418-425.	2.6	39
32	La0.8Sr0.2Fe0.8Cu0.2O3â^' as "cobalt-free―cathode for La0.8Sr0.2Ga0.8Mg0.2O3â^' electrolyte. Journal of Power Sources, 2014, 271, 187-194.	4.0	52
33	Iron chelates as low-cost and effective electrocatalyst for oxygen reduction reaction in microbial fuel cells. International Journal of Hydrogen Energy, 2014, 39, 6462-6469.	3.8	61
34	Composite Polymer Electrolytes for Fuel Cell Applications: Fillerâ€Induced Effect on Water Sorption and Transport Properties. ChemPhysChem, 2013, 14, 3814-3821.	1.0	4
35	Development of glucose oxidase-based bioanodes for enzyme fuel cell applications. Journal of Applied Electrochemistry, 2013, 43, 181-190.	1.5	10
36	Layered tetratitanate intercalating sulfanilic acid for organic/inorganic proton conductors. Solid State Ionics, 2012, 227, 73-79.	1.3	6

#	Article	IF	Citations
37	On the proton conductivity of Nafion–Faujasite composite membranes for low temperature direct methanol fuel cells. Journal of Power Sources, 2011, 196, 9176-9187.	4.0	54
38	Layered Titanates Intercalating Organic Guest Spacers for Organic/Inorganic Proton Conductors. ECS Transactions, 2011, 41, 2091-2096.	0.3	1
39	Development of Nafion/Tin Oxide Composite MEA for DMFC Applications. Fuel Cells, 2010, 10, 790-797.	1.5	33
40	Protonâ€conducting electrolytes based on silylated and sulfonated polyetheretherketone: Synthesis and characterization. Journal of Polymer Science Part A, 2010, 48, 2178-2186.	2.5	9
41	Titania Nanosheets (TNS)/Sulfonated Poly Ether Ether Ketone (SPEEK) Nanocomposite Proton Exchange Membranes for Fuel Cells. Chemistry of Materials, 2010, 22, 1126-1133.	3.2	75
42	Composite Nafion/Sulfated Zirconia Membranes: Effect of the Filler Surface Properties on Proton Transport Characteristics. Chemistry of Materials, 2010, 22, 813-821.	3.2	103
43	Proton Conducting Hybrid Membranes Based on Aromatic Polymers Blends for Direct Methanol Fuel Cell Applications. Fuel Cells, 2009, 9, 387-393.	1.5	17
44	Effect of a Proton Conducting Filler on the Physicoâ€Chemical Properties of SPEEKâ€Based Membranes. Fuel Cells, 2009, 9, 372-380.	1.5	22
45	Sulfonated polyether ether ketone and hydrated tin oxide proton conducting composites for direct methanol fuel cell applications. Journal of Power Sources, 2008, 178, 554-560.	4.0	67
46	Composite Proton-Conducting Hybrid Polymers: Water Sorption Isotherms and Mechanical Properties of Blends of Sulfonated PEEK and Substituted PPSU. Chemistry of Materials, 2008, 20, 4327-4334.	3.2	72
47	Engineering materials and biology to boost performance of microbial fuel cells: a critical review. Energy and Environmental Science, 2008, 1, 417.	15.6	316
48	Composite Ormosil/Nafion Membranes as Electrolytes for Direct Methanol Fuel Cells. Journal of the Electrochemical Society, 2007, 154, B1148.	1.3	19
49	Effect of an ormosil-based filler on the physico-chemical and electrochemical properties of Nafion membranes. Journal of Power Sources, 2007, 169, 247-252.	4.0	10
50	A Simple New Route to Covalent Organic/Inorganic Hybrid Proton Exchange Polymeric Membranes. Chemistry of Materials, 2006, 18, 69-75.	3.2	87
51	Ormosil/Sulfonated Polyetheretherketone-Based Hybrid Composite Proton Conducting Membranes. Journal of the Electrochemical Society, 2006, 153, A1226.	1.3	23
52	Nanocomposite polymeric electrolytes to record electrophysiological brain signals in prolonged, unconventional or extreme conditions. Acta Biomaterialia, 2006, 2, 531-536.	4.1	0
53	Increasing the operation temperature of polymer electrolyte membranes for fuel cells: From nanocomposites to hybrids. Journal of Power Sources, 2006, 159, 12-20.	4.0	55
54	SPEEK/PPSU-based organic–inorganic membranes: proton conducting electrolytes in anhydrous and wet environments. Journal of Membrane Science, 2006, 279, 186-191.	4.1	56

#	Article	IF	CITATIONS
55	Sulfonated Polyether Ether Ketone-Based Composite Membranes Doped with a Tungsten-Based Inorganic Proton Conductor for Fuel Cell Applications. Journal of the Electrochemical Society, 2006, 153, A463.	1.3	44
56	Vanadium and tantalum-doped titanium oxide (TiTaV): a novel material for gas sensing. Sensors and Actuators B: Chemical, 2005, 108, 89-96.	4.0	24
57	A covalent organic/inorganic hybrid proton exchange polymeric membrane: synthesis and characterization. Polymer, 2005, 46, 1754-1758.	1.8	70
58	Thick-film gas sensors based on vanadium–titanium oxide powders prepared by sol-gel synthesis. Journal of the European Ceramic Society, 2004, 24, 1409-1413.	2.8	24
59	Nonhydrolytic Synthesis of NASICON of Composition Na3Zr2Si2PO12:Â A Spectroscopic Study. Chemistry of Materials, 2001, 13, 141-144.	3.2	22
60	Title is missing!. Journal of Sol-Gel Science and Technology, 2001, 22, 167-179.	1.1	113
61	Synthesis and Characterization of Novel Ionoconductor Gels for Biomedical Applications in Space. Journal of the Electrochemical Society, 2001, 148, J63.	1.3	6
62	199Hg NMR: a tool for direct detection of the products from acetoxymercuration of alkynes. Applied Organometallic Chemistry, 2000, 14, 565-569.	1.7	3
63	Title is missing!. Journal of Sol-Gel Science and Technology, 2000, 19, 577-580.	1.1	3
64	Non-Hydrolytic Routes for the Synthesis of NASICON. Journal of Sol-Gel Science and Technology, 2000, 19, 463-467.	1.1	8
65	Acetoxymercuration of alkynes.199Hg NMR spectra of addition products from arylphenylethynes. Magnetic Resonance in Chemistry, 1998, 36, 797-800.	1.1	3
66	Towards Neutron Scattering Identification of Olive Oil's Antioxidant Properties. Neutron News, 0, , 1-2.	0.1	0