List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3489827/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Engineering materials and biology to boost performance of microbial fuel cells: a critical review.<br>Energy and Environmental Science, 2008, 1, 417.                                           | 15.6 | 316       |
| 2  | Title is missing!. Journal of Sol-Gel Science and Technology, 2001, 22, 167-179.                                                                                                                | 1.1  | 113       |
| 3  | Composite Nafion/Sulfated Zirconia Membranes: Effect of the Filler Surface Properties on Proton<br>Transport Characteristics. Chemistry of Materials, 2010, 22, 813-821.                        | 3.2  | 103       |
| 4  | Iron/Polyindole-based Electrocatalysts to Enhance Oxygen Reduction in Microbial Fuel Cells.<br>Electrochimica Acta, 2016, 190, 388-395.                                                         | 2.6  | 101       |
| 5  | A Simple New Route to Covalent Organic/Inorganic Hybrid Proton Exchange Polymeric Membranes.<br>Chemistry of Materials, 2006, 18, 69-75.                                                        | 3.2  | 87        |
| 6  | Ni supported on γ-Al 2 O 3 promoted by Ru for the dry reforming of methane in packed and monolithic reactors. Fuel Processing Technology, 2017, 158, 130-140.                                   | 3.7  | 77        |
| 7  | Titania Nanosheets (TNS)/Sulfonated Poly Ether Ether Ketone (SPEEK) Nanocomposite Proton Exchange<br>Membranes for Fuel Cells. Chemistry of Materials, 2010, 22, 1126-1133.                     | 3.2  | 75        |
| 8  | Graphene oxide nanoplatforms to enhance catalytic performance of iron phthalocyanine for oxygen reduction reaction in bioelectrochemical systems. Journal of Power Sources, 2017, 356, 381-388. | 4.0  | 75        |
| 9  | Composite Proton-Conducting Hybrid Polymers: Water Sorption Isotherms and Mechanical Properties of Blends of Sulfonated PEEK and Substituted PPSU. Chemistry of Materials, 2008, 20, 4327-4334. | 3.2  | 72        |
| 10 | A covalent organic/inorganic hybrid proton exchange polymeric membrane: synthesis and characterization. Polymer, 2005, 46, 1754-1758.                                                           | 1.8  | 70        |
| 11 | Sulfonated polyether ether ketone and hydrated tin oxide proton conducting composites for direct methanol fuel cell applications. Journal of Power Sources, 2008, 178, 554-560.                 | 4.0  | 67        |
| 12 | Design of Iron(II) Phthalocyanineâ€Derived Oxygen Reduction Electrocatalysts for Highâ€Powerâ€Density<br>Microbial Fuel Cells. ChemSusChem, 2017, 10, 3243-3251.                                | 3.6  | 67        |
| 13 | Organically functionalized titanium oxide/Nafion composite proton exchange membranes for fuel cells applications. Journal of Power Sources, 2014, 248, 1127-1132.                               | 4.0  | 65        |
| 14 | MnOx-based electrocatalysts for enhanced oxygen reduction in microbial fuel cell air cathodes.<br>Journal of Power Sources, 2018, 390, 45-53.                                                   | 4.0  | 64        |
| 15 | Iron chelates as low-cost and effective electrocatalyst for oxygen reduction reaction in microbial fuel cells. International Journal of Hydrogen Energy, 2014, 39, 6462-6469.                   | 3.8  | 61        |
| 16 | SPEEK/PPSU-based organic–inorganic membranes: proton conducting electrolytes in anhydrous and wet environments. Journal of Membrane Science, 2006, 279, 186-191.                                | 4.1  | 56        |
| 17 | Increasing the operation temperature of polymer electrolyte membranes for fuel cells: From nanocomposites to hybrids. Journal of Power Sources, 2006, 159, 12-20.                               | 4.0  | 55        |
| 18 | On the proton conductivity of Nafion–Faujasite composite membranes for low temperature direct<br>methanol fuel cells. Journal of Power Sources, 2011, 196, 9176-9187.                           | 4.0  | 54        |

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | La0.8Sr0.2Fe0.8Cu0.2O3â^' as "cobalt-free―cathode for La0.8Sr0.2Ga0.8Mg0.2O3â^' electrolyte. Journal of<br>Power Sources, 2014, 271, 187-194.                                                                                        | 4.0 | 52        |
| 20 | Iron–nitrogen-functionalized carbon as efficient oxygen reduction reaction electrocatalyst in<br>microbial fuel cells. International Journal of Hydrogen Energy, 2016, 41, 19637-19644.                                              | 3.8 | 47        |
| 21 | Sulfonated Polyether Ether Ketone-Based Composite Membranes Doped with a Tungsten-Based<br>Inorganic Proton Conductor for Fuel Cell Applications. Journal of the Electrochemical Society, 2006,<br>153, A463.                        | 1.3 | 44        |
| 22 | Effect of filler surface functionalization on the performance of Nafion/Titanium oxide composite membranes. Electrochimica Acta, 2014, 147, 418-425.                                                                                 | 2.6 | 39        |
| 23 | Development of Nafion/Tin Oxide Composite MEA for DMFC Applications. Fuel Cells, 2010, 10, 790-797.                                                                                                                                  | 1.5 | 33        |
| 24 | Lanthanum chromite based composite anodes for dry reforming of methane. International Journal of<br>Hydrogen Energy, 2018, 43, 14742-14750.                                                                                          | 3.8 | 33        |
| 25 | A redox stable Pd-doped perovskite for SOFC applications. Journal of Materials Chemistry A, 2019, 7, 5344-5352.                                                                                                                      | 5.2 | 33        |
| 26 | Enhancement of proton mobility and mitigation of methanol crossover in sPEEK fuel cells by an<br>organically modified titania nanofiller. Journal of Solid State Electrochemistry, 2016, 20, 1585-1598.                              | 1.2 | 30        |
| 27 | Oxygen Reduction Reaction Electrocatalysts Derived from Iron Salt and Benzimidazole and<br>Aminobenzimidazole Precursors and Their Application in Microbial Fuel Cell Cathodes. ACS Applied<br>Energy Materials, 2018, 1, 5755-5765. | 2.5 | 29        |
| 28 | Highly ion selective hydrocarbon-based membranes containing sulfonated hypercrosslinked<br>polystyrene nanoparticles for vanadium redox flow batteries. Journal of Membrane Science, 2018, 563,<br>552-560.                          | 4.1 | 26        |
| 29 | Thick-film gas sensors based on vanadium–titanium oxide powders prepared by sol-gel synthesis.<br>Journal of the European Ceramic Society, 2004, 24, 1409-1413.                                                                      | 2.8 | 24        |
| 30 | Vanadium and tantalum-doped titanium oxide (TiTaV): a novel material for gas sensing. Sensors and<br>Actuators B: Chemical, 2005, 108, 89-96.                                                                                        | 4.0 | 24        |
| 31 | Ormosil/Sulfonated Polyetheretherketone-Based Hybrid Composite Proton Conducting Membranes.<br>Journal of the Electrochemical Society, 2006, 153, A1226.                                                                             | 1.3 | 23        |
| 32 | Poly(phenylene sulfide sulfone) based membranes with improved stability for vanadium redox flow<br>batteries. Journal of Materials Chemistry A, 2017, 5, 18845-18853.                                                                | 5.2 | 23        |
| 33 | Nonhydrolytic Synthesis of NASICON of Composition Na3Zr2Si2PO12:Â A Spectroscopic Study. Chemistry of Materials, 2001, 13, 141-144.                                                                                                  | 3.2 | 22        |
| 34 | Effect of a Proton Conducting Filler on the Physicoâ€Chemical Properties of SPEEKâ€Based Membranes.<br>Fuel Cells, 2009, 9, 372-380.                                                                                                 | 1.5 | 22        |
| 35 | The role of manganese substitution on the redox behavior of La0.6Sr0.4Fe0.8Mn0.2O3-δ. Journal of the European Ceramic Society, 2020, 40, 4076-4083.                                                                                  | 2.8 | 20        |
| 36 | Composite Ormosil/Nafion Membranes as Electrolytes for Direct Methanol Fuel Cells. Journal of the Electrochemical Society, 2007, 154, B1148.                                                                                         | 1.3 | 19        |

| #  | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Effect of Active Site Poisoning on Ironâ^'Nitrogenâ^'Carbon Platinumâ€Groupâ€Metalâ€Free Oxygen Reduction<br>Reaction Catalysts Operating in Neutral Media: A Rotating Disk Electrode Study. ChemElectroChem,<br>2020, 7, 3044-3055. | 1.7  | 19        |
| 38 | Proton Conducting Hybrid Membranes Based on Aromatic Polymers Blends for Direct Methanol Fuel<br>Cell Applications. Fuel Cells, 2009, 9, 387-393.                                                                                    | 1.5  | 17        |
| 39 | Electrochemical performance and stability of LSFMn+NiSDC anode in dry methane. Electrochimica<br>Acta, 2020, 362, 137116.                                                                                                            | 2.6  | 16        |
| 40 | Ni and Ni-Co La0.8Sr0.2Ga0.8Mg0.2O3â^î^ infiltrated cells in H2and CH4/CO2 mixture. Applied Catalysis B:<br>Environmental, 2016, 191, 1-7.                                                                                           | 10.8 | 15        |
| 41 | Orthodontic archwire composition and phase analyses by neutron spectroscopy. Dental Materials<br>Journal, 2017, 36, 282-288.                                                                                                         | 0.8  | 15        |
| 42 | Composition―Nanostructure Steered Performance Predictions in Steel Wires. Nanomaterials, 2019, 9,<br>1119.                                                                                                                           | 1.9  | 15        |
| 43 | Compositional studies of functional orthodontic archwires using prompt-gamma activation analysis at a pulsed neutron source. Journal of Analytical Atomic Spectrometry, 2017, 32, 1420-1427.                                         | 1.6  | 14        |
| 44 | Tuning Structural Changes in Glucose Oxidase for Enzyme Fuel Cell Applications. ACS Applied<br>Materials & Interfaces, 2015, 7, 28311-28318.                                                                                         | 4.0  | 11        |
| 45 | Investigating the factors that influence resistance rise of PIM-1 membranes in nonaqueous electrolytes. Electrochemistry Communications, 2019, 107, 106530.                                                                          | 2.3  | 11        |
| 46 | Pd-doped perovskite-based SOFC anodes for biogas. Journal of Solid State Electrochemistry, 2020, 24,<br>93-100.                                                                                                                      | 1.2  | 11        |
| 47 | Effect of an ormosil-based filler on the physico-chemical and electrochemical properties of Nafion membranes. Journal of Power Sources, 2007, 169, 247-252.                                                                          | 4.0  | 10        |
| 48 | Development of glucose oxidase-based bioanodes for enzyme fuel cell applications. Journal of Applied<br>Electrochemistry, 2013, 43, 181-190.                                                                                         | 1.5  | 10        |
| 49 | Protonâ€conducting electrolytes based on silylated and sulfonated polyetheretherketone: Synthesis<br>and characterization. Journal of Polymer Science Part A, 2010, 48, 2178-2186.                                                   | 2.5  | 9         |
| 50 | Non-Hydrolytic Routes for the Synthesis of NASICON. Journal of Sol-Gel Science and Technology, 2000, 19, 463-467.                                                                                                                    | 1.1  | 8         |
| 51 | Pd-doped lanthanum ferrites for symmetric solid oxide fuel cells (SSOFCs). Materialia, 2019, 8, 100460.                                                                                                                              | 1.3  | 8         |
| 52 | Novel Composite Fuel Electrode for CO <sub>2</sub> /CO-RSOCs. Journal of the Electrochemical Society, 2021, 168, 104507.                                                                                                             | 1.3  | 7         |
| 53 | Synthesis and Characterization of Novel Ionoconductor Gels for Biomedical Applications in Space.<br>Journal of the Electrochemical Society, 2001, 148, J63.                                                                          | 1.3  | 6         |
| 54 | Layered tetratitanate intercalating sulfanilic acid for organic/inorganic proton conductors. Solid<br>State Ionics, 2012, 227, 73-79.                                                                                                | 1.3  | 6         |

| #  | Article                                                                                                                                                                     | IF             | CITATIONS    |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|
| 55 | Lithium ion storage in 1D and 2D redox active metal-organic frameworks. Electrochimica Acta, 2020, 341, 136063.                                                             | 2.6            | 6            |
| 56 | Nickel-Based Structured Catalysts for Indirect Internal Reforming of Methane. Applied Sciences<br>(Switzerland), 2020, 10, 3083.                                            | 1.3            | 5            |
| 57 | Looking for Minor Phenolic Compounds in Extra Virgin Olive Oils Using Neutron and Raman<br>Spectroscopies. Antioxidants, 2021, 10, 643.                                     | 2.2            | 5            |
| 58 | Composite Polymer Electrolytes for Fuel Cell Applications: Fillerâ€Induced Effect on Water Sorption<br>and Transport Properties. ChemPhysChem, 2013, 14, 3814-3821.         | 1.0            | 4            |
| 59 | Bioarchaeological approach to the study of the medieval population of Santa Severa (Rome, 7th–15th) Tj ETQo                                                                 | 110.784<br>0.2 | 1314 rgBT /0 |
| 60 | Redox-active coordination polymers as bifunctional electrolytes in slurry-based aqueous batteries at neutral pH. Journal of Electroanalytical Chemistry, 2021, 895, 115442. | 1.9            | 4            |
| 61 | Acetoxymercuration of alkynes.199Hg NMR spectra of addition products from arylphenylethynes.<br>Magnetic Resonance in Chemistry, 1998, 36, 797-800.                         | 1.1            | 3            |
| 62 | 199Hg NMR: a tool for direct detection of the products from acetoxymercuration of alkynes. Applied Organometallic Chemistry, 2000, 14, 565-569.                             | 1.7            | 3            |
| 63 | Title is missing!. Journal of Sol-Gel Science and Technology, 2000, 19, 577-580.                                                                                            | 1.1            | 3            |
| 64 | Layered Titanates Intercalating Organic Guest Spacers for Organic/Inorganic Proton Conductors. ECS Transactions, 2011, 41, 2091-2096.                                       | 0.3            | 1            |
| 65 | Nanocomposite polymeric electrolytes to record electrophysiological brain signals in prolonged, unconventional or extreme conditions. Acta Biomaterialia, 2006, 2, 531-536. | 4.1            | 0            |
| 66 | Towards Neutron Scattering Identification of Olive Oil's Antioxidant Properties. Neutron News, 0, ,<br>1-2.                                                                 | 0.1            | 0            |