Tong Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/348974/publications.pdf

Version: 2024-02-01

		159525	1	175177
55	3,783	30		52
papers	citations	h-index		g-index
56	56	56		5077
36	36	36		3077
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Hydrogen production from formic acid decomposition at room temperature using a Ag–Pd core–shell nanocatalyst. Nature Nanotechnology, 2011, 6, 302-307.	15.6	1,028
2	\ddot{l} % phase acts as a switch between dislocation channeling and joint twinning- and transformation-induced plasticity in a metastable \hat{l}^2 titanium alloy. Acta Materialia, 2018, 151, 67-77.	3.8	187
3	Sequencing of metals in multivariate metal-organic frameworks. Science, 2020, 369, 674-680.	6.0	165
4	Atomic-scale insights into surface species of electrocatalysts in three dimensions. Nature Catalysis, 2018, 1, 300-305.	16.1	161
5	New insights into the phase transformations to isothermal ω and ω-assisted \hat{l}_{\pm} in near \hat{l}^{2} -Ti alloys. Acta Materialia, 2016, 106, 353-366.	3.8	155
6	Degradation of iridium oxides <i>via</i> oxygen evolution from the lattice: correlating atomic scale structure with reaction mechanisms. Energy and Environmental Science, 2019, 12, 3548-3555.	15.6	147
7	Nanojunctionâ€Mediated Photocatalytic Enhancement in Heterostructured CdS/ZnO, CdSe/ZnO, and CdTe/ZnO Nanocrystals. Angewandte Chemie - International Edition, 2014, 53, 7838-7842.	7.2	133
8	Atom probe tomography. Nature Reviews Methods Primers, 2021, 1, .	11.8	131
9	Non-syngas direct steam reforming of methanol to hydrogen and carbon dioxide at low temperature. Nature Communications, 2012, 3, 1230.	5.8	129
10	Chemical boundary engineering: A new route toward lean, ultrastrong yet ductile steels. Science Advances, 2020, 6, eaay1430.	4.7	120
11	Characterizing solute hydrogen and hydrides in pure and alloyed titanium at the atomic scale. Acta Materialia, 2018, 150, 273-280.	3.8	81
12	3D atomic-scale imaging of mixed Co-Fe spinel oxide nanoparticles during oxygen evolution reaction. Nature Communications, 2022, 13, 179.	5.8	77
13	The mechanism of i‰-assisted l̂± phase formation in near l̂²-Ti alloys. Scripta Materialia, 2015, 104, 75-78.	2.6	75
14	Superelasticity and Tunable Thermal Expansion across a Wide Temperature Range. Journal of Materials Science and Technology, 2016, 32, 705-709.	5.6	72
15	The evolution of microstructure and mechanical properties of Ti–5Al–5Mo–5V–2Cr–1Fe during ageing. Journal of Alloys and Compounds, 2015, 629, 260-273.	2.8	56
16	New approaches to nanoparticle sample fabrication for atom probe tomography. Ultramicroscopy, 2015, 159, 413-419.	0.8	56
17	Why Tinâ€Doping Enhances the Efficiency of Hematite Photoanodes for Water Splitting—The Full Picture. Advanced Functional Materials, 2018, 28, 1804472.	7.8	53
18	Atomic Imaging of Carbon-Supported Pt, Pt/Co, and Ir@Pt Nanocatalysts by Atom-Probe Tomography. ACS Catalysis, 2014, 4, 695-702.	5.5	50

#	Article	IF	CITATIONS
19	Elastically confined martensitic transformation at the nano-scale in a multifunctional titanium alloy. Acta Materialia, 2017, 135, 330-339.	3.8	50
20	Effect of tool wear evolution on chip formation during dry machining ofÂTi-6Al-4V alloy. International Journal of Machine Tools and Manufacture, 2018, 126, 13-17.	6.2	47
21	On the role of chemical heterogeneity in phase transformations and mechanical behavior of flash annealed quenching & mp; partitioning steels. Acta Materialia, 2020, 201, 266-277.	3.8	47
22	Tracing the coupled atomic shear and shuffle for a cubic to a hexagonal crystal transition. Scripta Materialia, 2017, 133, 70-74.	2.6	43
23	Unveiling the interface characteristics and their influence on the heat transfer behavior of hot-forged Cu–Cr/Diamond composites. Carbon, 2021, 172, 390-401.	5.4	43
24	Characterization of oxidation and reduction of a platinum–rhodium alloy by atom-probe tomography. Catalysis Today, 2011, 175, 552-557.	2.2	41
25	Acidity enhancement through synergy of penta- and tetra-coordinated aluminum species in amorphous silica networks. Nature Communications, 2020, 11, 225.	5.8	40
26	The influence of partitioning on the growth of intragranular \hat{l}_{\pm} in near- \hat{l}_{\pm}^2 Ti alloys. Journal of Alloys and Compounds, 2015, 643, 212-222.	2.8	39
27	Characterization of Oxidation and Reduction of Pt–Ru and Pt–Rh–Ru Alloys by Atom Probe Tomography and Comparison with Pt–Rh. Journal of Physical Chemistry C, 2012, 116, 17633-17640.	1.5	38
28	The role of ï‰ in the precipitation of α in near-β Ti alloys. Scripta Materialia, 2016, 117, 92-95.	2.6	37
29	Rapid Interchangeable Hydrogen, Hydride, and Proton Species at the Interface of Transition Metal Atom on Oxide Surface. Journal of the American Chemical Society, 2021, 143, 9105-9112.	6.6	37
30	A review of the metastable omega phase in beta titanium alloys: the phase transformation mechanisms and its effect on mechanical properties. International Materials Reviews, 2023, 68, 26-45.	9.4	35
31	Nucleation driving force for l̃‰-assisted formation of l̂ \pm and associated l̃‰ morphology in l̂ 2 -Ti alloys. Scripta Materialia, 2018, 155, 149-154.	2.6	31
32	Composition of the nanosized orthorhombic O′ phase and its direct transformation to fine α during ageing in metastable β-Ti alloys. Scripta Materialia, 2019, 170, 183-188.	2.6	30
33	Characterization of Oxidation and Reduction of a Palladium–Rhodium Alloy by Atom-Probe Tomography. Journal of Physical Chemistry C, 2012, 116, 4760-4766.	1.5	28
34	Sintering and biocompatibility of blended elemental Ti-xNb alloys. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 104, 103691.	1.5	27
35	Enhanced propylene oxide selectivity for gas phase direct propylene epoxidation by lattice expansion of silver atoms on nickel nanoparticles. Applied Catalysis B: Environmental, 2019, 243, 304-312.	10.8	26
36	Direct Detection of Surface Species Formed on Iridium Electrocatalysts during the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2021, 60, 21396-21403.	7.2	26

#	Article	IF	CITATIONS
37	Stabilizing the body centered cubic crystal in titanium alloys by a nano-scale concentration modulation. Journal of Alloys and Compounds, 2017, 700, 155-158.	2.8	25
38	Defect Segregation and Its Effect on the Photoelectrochemical Properties of Ti-Doped Hematite Photoanodes for Solar Water Splitting. Chemistry of Materials, 2020, 32, 1031-1040.	3.2	23
39	Precipitation of the α-phase in an ultrafine grained beta-titanium alloy processed by severe plastic deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 605, 144-150.	2.6	22
40	Atomicâ€Precision Tailoring of Au–Ag Core–Shell Composite Nanoparticles for Direct Electrochemicalâ€Plasmonic Hydrogen Evolution in Water Splitting. Advanced Functional Materials, 2021, 31, 2102517.	7.8	21
41	Continuous and reversible atomic rearrangement in a multifunctional titanium alloy. Materialia, 2018, 2, 1-8.	1.3	20
42	Insights into the Formation, Chemical Stability, and Activity of Transient Ni∢sub>∢i>y∢/i>∢/sub>P@NiO∢i>x∢/i> Core–Shell Heterostructures for the Oxygen Evolution Reaction. ACS Applied Energy Materials, 2020, 3, 2304-2309.	2.5	20
43	Stabilization of an iridium oxygen evolution catalyst by titanium oxides. JPhys Energy, 2021, 3, 034006.	2.3	19
44	Point-by-point compositional analysis for atom probe tomography. MethodsX, 2014, 1, 12-18.	0.7	17
45	Atomic engineering of platinum alloy surfaces. Ultramicroscopy, 2013, 132, 205-211.	0.8	16
46	Elemental distributions within multiphase quaternary Pb chalcogenide thermoelectric materials determined through three-dimensional atom probe tomography. Nano Energy, 2016, 26, 157-163.	8.2	15
47	Direct Detection of Surface Species Formed on Iridium Electrocatalysts during the Oxygen Evolution Reaction. Angewandte Chemie, 2021, 133, 21566-21573.	1.6	10
48	Synthesis and Characterization of Platinum Nanoparticle Catalysts Capped with Isolated Zinc Species in SBA-15 cChannels: The Wall Effect. ACS Applied Nano Materials, 2018, 1, 6603-6612.	2.4	7
49	Titanium-Doped Copper-Diamond Composites Fabricated by Hot-Forging of Powder Mixtures or Cold-Pressed Powder Preforms. Jom, 2019, 71, 4867-4871.	0.9	7
50	Sintering Activated Atomic Palladium Catalysts with High-Temperature Tolerance of â ¹ / ₄ 1,000°C. Cell Reports Physical Science, 2021, 2, 100287.	2.8	7
51	Atom Probe Tomography. Praktische Metallographie/Practical Metallography, 2018, 55, 515-526.	0.1	2
52	Multiscale Characterization of Microstructure in Near-Surface Regions of a 16MnCr5 Gear Wheel After Cyclic Loading. Jom, 2018, 70, 1758-1764.	0.9	0
53	Atomic-scale characterisation of catalyst nanoparticles in ionic liquids by atom probe tomography. Microscopy and Microanalysis, 2019, 25, 2530-2531.	0.2	0
54	The effect of laser energy on the measurement of oxide stoichiometry of Co2FeO4 nanoparticles by atom probe tomography. Microscopy and Microanalysis, 2021, 27, 990-991.	0.2	0

#	Article	lF	CITATIONS
55	Tuning Fundamental Properties of Ir-Based Materials to Enhance Their Electrocatalytic Performance in the Oxygen Evolution Reaction. ECS Meeting Abstracts, 2020, MA2020-01, 1557-1557.	0.0	O