Isabella M Grumbach

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3489596/publications.pdf

Version: 2024-02-01

72 papers

3,503 citations

147726 31 h-index 58 g-index

76 all docs 76 docs citations

76 times ranked 5013 citing authors

#	Article	IF	Citations
1	Measuring hyperemic response to light flicker stimulus using continuous laser speckle flowgraphy in mice. Experimental Eye Research, 2022, 216, 108952.	1.2	4
2	Longitudinal optical coherence tomography angiography (OCT-A) in a patient with radiation retinopathy following plaque brachytherapy for uveal melanoma. American Journal of Ophthalmology Case Reports, 2022, 26, 101508.	0.4	5
3	Targeted Nanoparticles to Mitigate Radiationâ€Induced Bloodâ€Brain Barrier Disruption and Cognitive Impairment. FASEB Journal, 2022, 36, .	0.2	O
4	Knockout of Sorbin And SH3 Domain Containing 2 (Sorbs2) in Cardiomyocytes Leads to Dilated Cardiomyopathy in Mice. Journal of the American Heart Association, 2022, 11 , .	1.6	5
5	Reduced blood flow by laser speckle flowgraphy after 125I-plaque brachytherapy for uveal melanoma. BMC Ophthalmology, 2022, 22, .	0.6	4
6	Sex‧pecific Differences in Endothelial Function Are Driven by Divergent Mitochondrial Ca ²⁺ Handling. Journal of the American Heart Association, 2022, 11, .	1.6	4
7	Spatiotemporal restriction of endothelial cell calcium signaling is required during leukocyte transmigration. Journal of Experimental Medicine, 2021, 218, .	4.2	17
8	Longitudinal Testing of Retinal Blood Flow in a Mouse Model of Hypertension by Laser Speckle Flowgraphy. Translational Vision Science and Technology, 2021, 10, 16.	1.1	9
9	Preclinical Models of Cancer Therapy–Associated Cardiovascular Toxicity: A Scientific Statement From the American Heart Association. Circulation Research, 2021, 129, e21-e34.	2.0	37
10	A "Failed―Assay Development for the Discovery of Rescuing Small Molecules from the Radiation Damage. SLAS Discovery, 2021, 26, 247255522110206.	1.4	1
11	What Makes a Great Mentor: Interviews With Recipients of the ATVB Mentor of Women Award. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2641-2647.	1.1	3
12	Temporal Relationship Between Visual Field, Retinal and Microvascular Pathology Following ¹²⁵ I-Plaque Brachytherapy for Uveal Melanoma., 2021, 62, 3.		7
13	OUP accepted manuscript. Europace, 2021, , .	0.7	1
14	Abstract 119: Mitochondrial Redox Mechanisms Leading To Sustained Radiation-induced Endothelial Injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, .	1.1	0
15	Cardioâ€Oncology at the Beginning of a New Decade. Journal of the American Heart Association, 2020, 9, e015890.	1.6	4
16	Current Perspectives on Coronavirus Disease 2019 and Cardiovascular Disease: A White Paper by the <i>JAHA</i> Editors. Journal of the American Heart Association, 2020, 9, e017013.	1.6	52
17	Abstract 17415: Mitochondrial Ca2+/Calmodulin-Dependent Kinase II Inhibition Changes the Calcium Homeostasis in the Endothelium and Decreases the Vascular Relaxation in Mesenteric Arteries. Circulation, 2020, 142, .	1.6	0
18	Metabolic Stress. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 991-997.	1.1	9

#	Article	IF	CITATIONS
19	Loss of MCU prevents mitochondrial fusion in G $<$ sub $>$ 1 $<$ /sub $>$ -S phase and blocks cell cycle progression and proliferation. Science Signaling, 2019, 12, .	1.6	54
20	MiR-204 regulates type 1 IP3R to control vascular smooth muscle cell contractility and blood pressure. Cell Calcium, 2019, 80, 18-24.	1.1	14
21	Region-Based Segmentation of Capillary Density in Optical Coherence Tomography Angiography. Lecture Notes in Computer Science, 2019, , 18-25.	1.0	5
22	Defective protein repair under methionine sulfoxide A deletion drives autophagy and ARE-dependent gene transcription. Redox Biology, 2018, 16, 401-413.	3.9	13
23	Inhibition of the mitochondrial calcium uniporter prevents IL-13 and allergen-mediated airway epithelial apoptosis and loss of barrier function. Experimental Cell Research, 2018, 362, 400-411.	1.2	20
24	The Superantigen Toxic Shock Syndrome Toxin 1 Alters Human Aortic Endothelial Cell Function. Infection and Immunity, 2018, 86, .	1.0	18
25	CaMKII (Ca ²⁺ /Calmodulin-Dependent Kinase II) in Mitochondria of Smooth Muscle Cells Controls Mitochondrial Mobility, Migration, and Neointima Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 1333-1345.	1.1	46
26	Integrated genetic and epigenetic prediction of coronary heart disease in the Framingham Heart Study. PLoS ONE, 2018, 13, e0190549.	1.1	83
27	Cationic CaMKII Inhibiting Nanoparticles Prevent Allergic Asthma. Molecular Pharmaceutics, 2017, 14, 2166-2175.	2.3	22
28	Endothelial CaMKII as a regulator of eNOS activity and NO-mediated vasoreactivity. PLoS ONE, 2017, 12, e0186311.	1.1	31
29	Mitochondrial CaMKII inhibition in airway epithelium protects against allergic asthma. JCI Insight, 2017, 2, e88297.	2.3	42
30	Role of CaMKII in Ang-II-dependent small artery remodeling. Vascular Pharmacology, 2016, 87, 172-179.	1.0	4
31	"Small Blood Vessels: Big Health Problems?― Scientific Recommendations of the National Institutes of Health Workshop. Journal of the American Heart Association, 2016, 5, .	1.6	67
32	CaMKII inhibition in type II pneumocytes protects from bleomycin-induced pulmonary fibrosis by preventing Ca ²⁺ -dependent apoptosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L86-L94.	1.3	17
33	Protein methionine oxidation augments reperfusion injury in acute ischemic stroke. JCI Insight, 2016, 1 ,	2.3	30
34	Calcium/Calmodulinâ€Dependent Kinase II Inhibition in Smooth Muscle Reduces Angiotensin Il–Induced Hypertension by Controlling Aortic Remodeling and Baroreceptor Function. Journal of the American Heart Association, 2015, 4, e001949.	1.6	35
35	Fibronectin Splicing Variants Containing Extra Domain A Promote Atherosclerosis in Mice Through Toll-Like Receptor 4. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 2391-2400.	1.1	51
36	Deletion of Methionine Sulfoxide Reductase A Does Not Affect Atherothrombosis but Promotes Neointimal Hyperplasia and Extracellular Signal-Regulated Kinase 1/2 Signaling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 2594-2604.	1.1	10

3

#	Article	IF	CITATIONS
37	Mitochondrial-Targeted Antioxidant Therapy Decreases Transforming Growth Factor-β–Mediated Collagen Production in a Murine Asthma Model. American Journal of Respiratory Cell and Molecular Biology, 2015, 52, 106-115.	1.4	76
38	Oxidative activation of the Ca2+/calmodulin-dependent protein kinase II (CaMKII) regulates vascular smooth muscle migration and apoptosis. Vascular Pharmacology, 2014, 60, 75-83.	1.0	32
39	Differential Control of Calcium Homeostasis and Vascular Reactivity by Ca ²⁺ /Calmodulin-Dependent Kinase II. Hypertension, 2013, 62, 434-441.	1.3	31
40	CaMKII Is Essential for the Proasthmatic Effects of Oxidation. Science Translational Medicine, 2013, 5, 195ra97.	5.8	54
41	The Multifunctional Ca2+/Calmodulin-Dependent Kinase Ilδ (CaMKIIÎ) Regulates Arteriogenesis in a Mouse Model of Flow-Mediated Remodeling. PLoS ONE, 2013, 8, e71550.	1.1	20
42	Sildenafil Prevents and Reverses Transverse-Tubule Remodeling and Ca ²⁺ Handling Dysfunction in Right Ventricle Failure Induced by Pulmonary Artery Hypertension. Hypertension, 2012, 59, 355-362.	1.3	84
43	The multifunctional Ca ²⁺ /calmodulin-dependent kinase II regulates vascular smooth muscle migration through matrix metalloproteinase 9. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H1953-H1964.	1.5	39
44	CaMKII inhibition in vascular smooth muscle improves angiotensin II–hypertension. FASEB Journal, 2012, 26, lb599.	0.2	0
45	CaMKII in the Cardiovascular System: Sensing Redox States. Physiological Reviews, 2011, 91, 889-915.	13.1	192
46	The Multifunctional Ca2+/Calmodulin-dependent Kinase II $\hat{\Gamma}$ (CaMKII $\hat{\Gamma}$) Controls Neointima Formation after Carotid Ligation and Vascular Smooth Muscle Cell Proliferation through Cell Cycle Regulation by p21. Journal of Biological Chemistry, 2011, 286, 7990-7999.	1.6	53
47	Oxidation of CaMKII determines the cardiotoxic effects of aldosterone. Nature Medicine, 2011, 17, 1610-1618.	15.2	220
48	Oxidized CaMKII causes cardiac sinus node dysfunction in mice. Journal of Clinical Investigation, 2011, 121, 3277-3288.	3.9	193
49	Ca $\langle sub \rangle \langle i \rangle V \langle i \rangle \langle sub \rangle$ 1.2 \hat{l}^2 -subunit coordinates CaMKII-triggered cardiomyocyte death and afterdepolarizations. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4996-5000.	3.3	114
50	Calmodulin kinase II is required for angiotensin II-mediated vascular smooth muscle hypertrophy. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H688-H698.	1.5	70
51	Calmodulin kinase II is required for fight or flight sinoatrial node physiology. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5972-5977.	3.3	130
52	Endothelial mechanotransduction, nitric oxide and vascular inflammation. Journal of Internal Medicine, 2006, 259, 351-363.	2.7	273
53	A negative feedback mechanism involving nitric oxide and nuclear factor kappa-B modulates endothelial nitric oxide synthase transcription. Journal of Molecular and Cellular Cardiology, 2005, 39, 595-603.	0.9	154
54	Shear Stress Regulates Endothelial Nitric-oxide Synthase Promoter Activity through Nuclear Factor Î [®] B Binding. Journal of Biological Chemistry, 2004, 279, 163-168.	1.6	184

#	Article	IF	Citations
55	Engagement of the CrkL adaptor in interferon $\hat{l}\pm$ signalling in BCR-ABL-expressing cells. British Journal of Haematology, 2001, 112, 327-336.	1.2	35
56	The p38 MAPK Pathway Mediates the Growth Inhibitory Effects of Interferon-α in BCR-ABL-expressing Cells. Journal of Biological Chemistry, 2001, 276, 28570-28577.	1.6	135
57	Transient Induction of Cytokine Production in Human Myocardial Fibroblasts by Coxsackievirus B3. Circulation Research, 2000, 86, 753-759.	2.0	33
58	Activation of the Jak-Stat Pathway in Cells That Exhibit Selective Sensitivity to the Antiviral Effects of IFN-beta Compared with IFN-alpha. Journal of Interferon and Cytokine Research, 1999, 19, 797-801.	0.5	28
59	Antiviral activity of WIN 54954 in coxsackievirus B2 carrier state infected human myocardial fibroblasts. Antiviral Research, 1998, 37, 47-56.	1.9	12
60	Interferon $\hat{l}\pm$ activates the tyrosine kinase Lyn in haemopoietic cells. British Journal of Haematology, 1998, 101, 446-449.	1.2	13
61	Monocyte activation in congestive heart failure due to coronary artery disease and idiopathic dilated cardiomyopathy. International Journal of Cardiology, 1998, 63, 237-244.	0.8	54
62	Highly sensitive detection of gene expression of an intronless gene: amplification of mRNA, but not genomic DNA by nucleic acid sequence based amplification (NASBA). Nucleic Acids Research, 1998, 26, 2250-2251.	6.5	41
63	Low Prevalence of Hepatitis C Virus Antibodies and RNA in Patients with Myocarditis and Dilated Cardiomyopathy. Cardiology, 1998, 90, 75-78.	0.6	20
64	Coxsackievirus Genome in Myocardium of Patients with Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy. Cardiology, 1998, 89, 241-245.	0.6	37
65	Detection of Enterovirus RNA in the Myocardium of a Patient with Arrhythmogenic Right Ventricular Cardiomyopathy by In Situ Hybridization. Clinical Infectious Diseases, 1997, 25, 1471-1472.	2.9	11
66	Giant Cell Myocarditis due to Coxsackie B2 Virus Infection. Cardiology, 1997, 88, 296-299.	0.6	22
67	Inhibition of coxsackievirus B3 carrier state infection of cultured human myocardial fibroblasts by ribavirin and human natural interferon-α. Antiviral Research, 1997, 34, 101-111.	1.9	29
68	Enterovirus heart disease of adults: A persistent, limited organ infection in the presence of neutralizing antibodies., 1997, 53, 196-204.		20
69	Recombinant Interferons \hat{l}^2 and \hat{l}^3 Have a Higher Antiviral Activity than Interferon- $\hat{l}\pm$ in Coxsackievirus B3-Infected Carrier State Cultures of Human Myocardial Fibroblasts. Journal of Interferon and Cytokine Research, 1996, 16, 283-287.	0.5	31
70	Immunohistochemical Localization of Five Members of the KV1 Channel Subunits: Contrasting Subcellular Locations and Neuron-specific Co-localizations in Rat Brain. European Journal of Neuroscience, 1995, 7, 2189-2205.	1.2	310
71	Neuropeptide Conjugation to Carrier Proteins. Methods in Neurosciences, 1993, 13, 333-351.	0.5	1
72	Sulpho-N-hydroxysuccinimide activated long chain biotin. Journal of Immunological Methods, 1991, 140, 205-210.	0.6	17