Gerben Vader

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/348930/publications.pdf

Version: 2024-02-01

516710 526287 2,482 35 16 27 h-index citations g-index papers 53 53 53 3154 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Checkpoint control in meiotic prophase: Idiosyncratic demands require unique characteristics. Current Topics in Developmental Biology, 2023, , 281-315.	2.2	6
2	Getting there: understanding the chromosomal recruitment of the AAA+ ATPase Pch2/TRIP13 during meiosis. Current Genetics, 2021, 67, 553-565.	1.7	7
3	ESI mutagenesis: a one-step method for introducing mutations into bacterial artificial chromosomes. Life Science Alliance, 2021, 4, e202000836.	2.8	2
4	Novel mechanistic insights into the role of Mer2 as the keystone of meiotic DNA break formation. ELife, 2021, 10 , .	6.0	19
5	Homeostatic Control of Meiotic Prophase Checkpoint Function by Pch2 and Hop1. Current Biology, 2020, 30, 4413-4424.e5.	3.9	32
6	A dCas9-Based System Identifies a Central Role for Ctf19 in Kinetochore-Derived Suppression of Meiotic Recombination. Genetics, 2020, 216, 395-408.	2.9	8
7	Active transcription and Orc1 drive chromatin association of the AAA+ ATPase Pch2 during meiotic G2/prophase. PLoS Genetics, 2020, 16, e1008905.	3.5	7
8	Biochemical and functional characterization of a meiosis-specific Pch2/ORC AAA+ assembly. Life Science Alliance, 2020, 3, e201900630.	2.8	8
9	Title is missing!. , 2020, 16, e1008905.		O
10	Title is missing!. , 2020, 16, e1008905.		0
11	Title is missing!. , 2020, 16, e1008905.		O
12	Title is missing!. , 2020, 16, e1008905.		0
13	Title is missing!. , 2020, 16, e1008905.		O
14	Title is missing!. , 2020, 16, e1008905.		0
15	Title is missing!. , 2020, 16, e1008905.		O
16	Title is missing!. , 2020, 16, e1008905.		0
17	Kinetochores, cohesin, and DNA breaks: Controlling meiotic recombination within pericentromeres. Yeast, 2019, 36, 121-127.	1.7	20
18	The greatest kinetochore show on earth. EMBO Reports, 2017, 18, 1473-1475.	4.5	3

#	Article	IF	Citations
19	Chromosome Synapsis Alleviates Mek1-Dependent Suppression of Meiotic DNA Repair. PLoS Biology, 2016, 14, e1002369.	5.6	95
20	Pch2TRIP13: controlling cell division through regulation of HORMA domains. Chromosoma, 2015, 124, 333-339.	2.2	80
21	The kinetochore prevents centromere-proximal crossover recombination during meiosis. ELife, 2015, 4,	6.0	108
22	HORMA Domains at the Heart of Meiotic Chromosome Dynamics. Developmental Cell, 2014, 31, 389-391.	7.0	17
23	Protection of repetitive DNA borders from self-induced meiotic instability. Nature, 2011, 477, 115-119.	27.8	98
24	Chromosome Segregation: Taking the Passenger Seat. Current Biology, 2010, 20, R879-R881.	3.9	7
25	Sensing Chromosome Bi-Orientation by Spatial Separation of Aurora B Kinase from Kinetochore Substrates. Science, 2009, 323, 1350-1353.	12.6	491
26	The chromosomal passenger complex and the spindle assembly checkpoint: kinetochore-microtubule error correction and beyond. Cell Division, 2008, 3, 10.	2.4	44
27	The Aurora kinase family in cell division and cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2008, 1786, 60-72.	7.4	281
28	Global Analysis of the Meiotic Crossover Landscape. Developmental Cell, 2008, 15, 401-415.	7.0	197
29	The Chromosomal Passenger Complex Controls Spindle Checkpoint Function Independent from Its Role in Correcting Microtubule–Kinetochore Interactions. Molecular Biology of the Cell, 2007, 18, 4553-4564.	2.1	88
30	Survivin mediates targeting of the chromosomal passenger complex to the centromere and midbody. EMBO Reports, 2006, 7, 85-92.	4.5	159
31	Subcellular localization and nucleocytoplasmic transport of the chromosomal passenger proteins before nuclear envelope breakdown. Oncogene, 2006, 25, 4867-4879.	5.9	34
32	The case for Survivin as mitotic regulator. Current Opinion in Cell Biology, 2006, 18, 616-622.	5.4	161
33	Uncoupling the Central Spindle-associated Function of the Chromosomal Passenger Complex from Its Role at Centromeres. Molecular Biology of the Cell, 2006, 17, 1897-1909.	2.1	69
34	The chromosomal passenger complex: guiding Aurora-B through mitosis. Journal of Cell Biology, 2006, 173, 833-837.	5.2	259
35	Polo-like Kinase-1 Is Required for Bipolar Spindle Formation but Is Dispensable for Anaphase Promoting Complex/Cdc20 Activation and Initiation of Cytokinesis. Journal of Biological Chemistry, 2004, 279, 36841-36854.	3.4	173