Nathalie Luciani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3488912/publications.pdf

Version: 2024-02-01

41 papers 3,603 citations

32 h-index 276875 41 g-index

43 all docs 43 docs citations

43 times ranked

6523 citing authors

#	Article	IF	CITATIONS
1	Development of extracellular vesicle-based medicinal products: A position paper of the group "Extracellular Vesicle translatiOn to clinicaL perspectiVEs – EVOLVE France― Advanced Drug Delivery Reviews, 2021, 179, 114001.	13.7	42
2	Unexpected intracellular biodegradation and recrystallization of gold nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 103-113.	7.1	147
3	Gold-based therapy: From past to present. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22639-22648.	7.1	85
4	High‶hroughput Differentiation of Embryonic Stem Cells into Cardiomyocytes with a Microfabricated Magnetic Pattern and Cyclic Stimulation. Advanced Functional Materials, 2020, 30, 2002541.	14.9	28
5	Biosynthesis of magnetic nanoparticles from nano-degradation products revealed in human stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4044-4053.	7.1	98
6	Role of growth factors and oxygen to limit hypertrophy and impact of high magnetic nanoparticles dose during stem cell chondrogenesis. Computational and Structural Biotechnology Journal, 2018, 16, 532-542.	4.1	10
7	Physiological Remediation of Cobalt Ferrite Nanoparticles by Ferritin. Scientific Reports, 2017, 7, 40075.	3.3	24
8	A 3D magnetic tissue stretcher for remote mechanical control of embryonic stem cell differentiation. Nature Communications, 2017, 8, 400.	12.8	123
9	3D Magnetic Stem Cell Aggregation and Bioreactor Maturation for Cartilage Regeneration. Journal of Visualized Experiments, 2017, , .	0.3	10
10	Ferritin Protein Regulates the Degradation of Iron Oxide Nanoparticles. Small, 2017, 13, 1602030.	10.0	69
11	Successful chondrogenesis within scaffolds, using magnetic stem cell confinement and bioreactor maturation. Acta Biomaterialia, 2016, 37, 101-110.	8.3	34
12	Massive Intracellular Biodegradation of Iron Oxide Nanoparticles Evidenced Magnetically at Single-Endosome and Tissue Levels. ACS Nano, 2016, 10, 7627-7638.	14.6	167
13	Massive release of extracellular vesicles from cancer cells after photodynamic treatment or chemotherapy. Scientific Reports, 2016, 6, 35376.	3.3	98
14	Biotransformations of magnetic nanoparticles in the body. Nano Today, 2016, 11, 280-284.	11.9	124
15	Synergic mechanisms of photothermal and photodynamic therapies mediated by photosensitizer/carbon nanotube complexes. Carbon, 2016, 97, 110-123.	10.3	65
16	Combining magnetic nanoparticles with cell derived microvesicles for drug loading and targeting. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 645-655.	3.3	118
17	The One Year Fate of Iron Oxide Coated Gold Nanoparticles in Mice. ACS Nano, 2015, 9, 7925-7939.	14.6	180
18	Heat-Generating Iron Oxide Nanocubes: Subtle "Destructurators―of the Tumoral Microenvironment. ACS Nano, 2014, 8, 4268-4283.	14.6	200

#	Article	IF	CITATIONS
19	High-Resolution Cellular MRI: Gadolinium and Iron Oxide Nanoparticles for in-Depth Dual-Cell Imaging of Engineered Tissue Constructs. ACS Nano, 2013, 7, 7500-7512.	14.6	88
20	Cell-derived vesicles as a bioplatform for the encapsulation of theranostic nanomaterials. Nanoscale, 2013, 5, 11374.	5.6	84
21	Use of Magnetic Forces to Promote Stem Cell Aggregation During Differentiation, and Cartilage Tissue Modeling. Advanced Materials, 2013, 25, 2611-2616.	21.0	84
22	Realâ€time highâ€resolution magnetic resonance tracking of macrophage subpopulations in a murine inflammation model: a pilot study with a commercially available cryogenic probe. Contrast Media and Molecular Imaging, 2013, 8, 193-203.	0.8	27
23	Magnetic and Photoresponsive Theranosomes: Translating Cell-Released Vesicles into Smart Nanovectors for Cancer Therapy. ACS Nano, 2013, 7, 4954-4966.	14.6	105
24	Managing Magnetic Nanoparticle Aggregation and Cellular Uptake: a Precondition for Efficient Stemâ€Cell Differentiation and MRI Tracking. Advanced Healthcare Materials, 2013, 2, 313-325.	7.6	73
25	Localization and Relative Quantification of Carbon Nanotubes in Cells with Multispectral Imaging Flow Cytometry. Journal of Visualized Experiments, 2013, , e50566.	0.3	9
26	Magnetic vesicles as MRI-trackable biogenic nanovectors., 2012,,.		0
27	Adipose Tissue Macrophages: MR Tracking to Monitor Obesity-associated Inflammation. Radiology, 2012, 263, 786-793.	7.3	26
28	Nanomagnetic Sensing of Blood Plasma Protein Interactions with Iron Oxide Nanoparticles: Impact on Macrophage Uptake. ACS Nano, 2012, 6, 2665-2678.	14.6	154
29	Intercellular Carbon Nanotube Translocation Assessed by Flow Cytometry Imaging. Nano Letters, 2012, 12, 4830-4837.	9.1	39
30	Cellular Transfer of Magnetic Nanoparticles Via Cell Microvesicles: Impact on Cell Tracking by Magnetic Resonance Imaging. Pharmaceutical Research, 2012, 29, 1392-1403.	3.5	41
31	Nanomagnetism reveals the intracellular clustering of iron oxide nanoparticles in the organism. Nanoscale, 2011, 3, 4402.	5.6	57
32	Multifunctional nanovectors based on magnetic nanoparticles coupled with biological vesicles or synthetic liposomes. Journal of Materials Chemistry, 2011, 21, 14387.	6.7	14
33	In vivo biodistribution and biological impact of injected carbon nanotubes using magnetic resonance techniques. International Journal of Nanomedicine, 2011, 6, 351.	6.7	61
34	Hemojuvelin: A New Link Between Obesity and Iron Homeostasis. Obesity, 2011, 19, 1545-1551.	3.0	33
35	Long term in vivo biotransformation of iron oxide nanoparticles. Biomaterials, 2011, 32, 3988-3999.	11.4	303
36	The role of cell-released microvesicles in the intercellular transfer of magnetic nanoparticles in the monocyte/macrophage system. Biomaterials, 2010, 31, 7061-7069.	11.4	52

#	Article	lF	CITATIONS
37	High-Resolution 1.5-Tesla Magnetic Resonance Imaging for Tissue-Engineered Constructs: A Noninvasive Tool to Assess Three-Dimensional Scaffold Architecture and Cell Seeding. Tissue Engineering - Part C: Methods, 2010, 16, 185-200.	2.1	38
38	Reactivity of the monocyte/macrophage system to superparamagnetic anionic nanoparticles. Journal of Materials Chemistry, 2009, 19, 6373.	6.7	51
39	Bariatric Surgery Can Correct Iron Depletion in Morbidly Obese Women: A Link with Chronic Inflammation. Obesity Surgery, 2008, 18, 709-714.	2.1	63
40	The Inflammatory C-Reactive Protein Is Increased in Both Liver and Adipose Tissue in Severely Obese Patients Independently from Metabolic Syndrome, Type 2 Diabetes, and NASH. American Journal of Gastroenterology, 2006, 101, 1824-1833.	0.4	162
41	Increased Adipose Tissue Expression of Hepcidin in Severe Obesity Is Independent From Diabetes and NASH. Gastroenterology, 2006, 131, 788-796.	1.3	416