Dariusz Dziga

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3488697/dariusz-dziga-publications-by-year.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

30 533 13 22 g-index

31 647 4.2 3.72 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
30	Cyanophage infections reduce photosynthetic activity and expression of CO2 fixation genes in the freshwater bloom-forming cyanobacterium Aphanizomenon flos-aquae. <i>Harmful Algae</i> , 2022 , 102215	5.3	O
29	Occurrence of a single-species cyanobacterial bloom in a lake in Cyprus: monitoring and treatment with hydrogen peroxide-releasing granules. <i>Environmental Sciences Europe</i> , 2021 , 33,	5	4
28	Are Bacterio- and Phytoplankton Community Compositions Related in Lakes Differing in Their Cyanobacteria Contribution and Physico-Chemical Properties?. <i>Genes</i> , 2021 , 12,	4.2	2
27	Microcystinase - a review of the natural occurrence, heterologous expression, and biotechnological application of MlrA. <i>Water Research</i> , 2021 , 189, 116646	12.5	8
26	The Dark Side of UV-Induced DNA Lesion Repair. <i>Genes</i> , 2020 , 11,	4.2	7
25	All You Need Is Light. Photorepair of UV-Induced Pyrimidine Dimers. <i>Genes</i> , 2020 , 11,	4.2	8
24	Biological Treatment for the Destruction of Cyanotoxins 2020 , 117-153		2
23	Transformation Products (TPs) of Cyanobacterial Metabolites During Treatment 2020, 231-305		1
22	Different Gene Expression Response of Polish and Australian Raphidiopsis raciborskii Strains to the Chill/Light Stress. <i>Applied Sciences (Switzerland)</i> , 2020 , 10, 5437	2.6	4
21	Correlation between specific groups of heterotrophic bacteria and microcystin biodegradation in freshwater bodies of central Europe. <i>FEMS Microbiology Ecology</i> , 2019 , 95,	4.3	10
20	The Effect of a Combined Hydrogen Peroxide-MlrA Treatment on the Phytoplankton Community and Microcystin Concentrations in a Mesocosm Experiment in Lake Ludo[] <i>Toxins</i> , 2019 , 11,	4.9	9
19	Heterologous expression of mlrA in a photoautotrophic host - Engineering cyanobacteria to degrade microcystins. <i>Environmental Pollution</i> , 2018 , 237, 926-935	9.3	20
18	Combined treatment of toxic cyanobacteria Microcystis aeruginosa with hydrogen peroxide and microcystin biodegradation agents results in quick toxin elimination. <i>Acta Biochimica Polonica</i> , 2018 , 65, 133-140	2	12
17	The biodegradation of microcystins in temperate freshwater bodies with previous cyanobacterial history. <i>Ecotoxicology and Environmental Safety</i> , 2017 , 145, 420-430	7	26
16	Cylindrospermopsin Biodegradation Abilities of Aeromonas sp. Isolated from Rusalla Lake. <i>Toxins</i> , 2016 , 8,	4.9	17
15	Characterization of Enzymatic Activity of MlrB and MlrC Proteins Involved in Bacterial Degradation of Cyanotoxins Microcystins. <i>Toxins</i> , 2016 , 8,	4.9	25
14	Wheat straw degradation and production of alternative substrates for nitrogenase of Rhodobacter sphaeroides. <i>Acta Biochimica Polonica</i> , 2015 , 62, 395-400	2	5

LIST OF PUBLICATIONS

13	Microcystin-LR affects properties of human epidermal skin cells crucial for regenerative processes. <i>Toxicon</i> , 2014 , 80, 38-46	2.8	19
12	Bioreactor study employing bacteria with enhanced activity toward cyanobacterial toxins microcystins. <i>Toxins</i> , 2014 , 6, 2379-92	4.9	22
11	Microbial degradation of microcystins. Chemical Research in Toxicology, 2013, 26, 841-52	4	94
10	Genetically Engineered Bacteria Immobilized in Alginate as an Option of Cyanotoxins Removal. <i>International Journal of Environmental Science and Development</i> , 2013 , 360-364	0.4	7
9	Characterization of microcystin-LR removal process in the presence of probiotic bacteria. <i>Toxicon</i> , 2012 , 59, 171-81	2.8	30
8	Heterologous expression and characterisation of microcystinase. <i>Toxicon</i> , 2012 , 59, 578-86	2.8	42
7	Verification of the role of MlrC in microcystin biodegradation by studies using a heterologously expressed enzyme. <i>Chemical Research in Toxicology</i> , 2012 , 25, 1192-4	4	25
6	EXTRACELLULAR ENZYMES OF THE MICROCYSTIS AERUGINOSA PCC 7813 STRAIN ARE INHIBITED IN THE PRESENCE OF HYDROQUINONE AND PYROGALLOL, ALLELOCHEMICALS PRODUCED BY AQUATIC PLANTS(1). <i>Journal of Phycology</i> , 2009 , 45, 1299-303	3	4
5	First report of the cyanobacterial toxin cylindrospermopsin in the shallow, eutrophic lakes of western Poland. <i>Chemosphere</i> , 2009 , 74, 669-75	8.4	61
4	The alteration of Microcystis aeruginosa biomass and dissolved microcystin-LR concentration following exposure to plant-producing phenols. <i>Environmental Toxicology</i> , 2007 , 22, 341-6	4.2	40
3	Fruit Yield of Tomato Cultivated on Media with Bicarbonate and Nitrate/Ammonium as the Nitrogen Source. <i>Journal of Plant Nutrition</i> , 2007 , 30, 149-161	2.3	4
2	Carbohydrate and free amino acid contents in tomato plants grown in media with bicarbonate and nitrate or ammonium. <i>Acta Physiologiae Plantarum</i> , 2005 , 27, 523-529	2.6	22
1	Biochemical and morphological alterations in rat liver Golgi complexes after treatment with bis(maltolato)oxovanadium(IV) [BMOV] or maltolalone. Pathology Pescageh and Practice, 2000, 196, 567	1304	3