Valentina Sala

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3488604/publications.pdf Version: 2024-02-01

VALENTINA SALA

#	Article	IF	CITATIONS
1	A PI3KÎ ³ mimetic peptide triggers CFTR gating, bronchodilation, and reduced inflammation in obstructive airway diseases. Science Translational Medicine, 2022, 14, eabl6328.	12.4	6
2	The Role of Anthracyclines in Cardio-Oncology: Oxidative Stress, Inflammation, and Autophagy. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-3.	4.0	4
3	Preventing and Treating Anthracycline Cardiotoxicity: New Insights. Annual Review of Pharmacology and Toxicology, 2021, 61, 309-332.	9.4	74
4	Understanding the common mechanisms of heart and skeletal muscle wasting in cancer cachexia. Oncogenesis, 2021, 10, 1.	4.9	75
5	Therapeutic peptides for the treatment of cystic fibrosis: Challenges and perspectives. European Journal of Medicinal Chemistry, 2021, 213, 113191.	5.5	8
6	Roles of phosphatidyl inositol 3 kinase gamma (PI3Kγ) in respiratory diseases. Cell Stress, 2021, 5, 40-51.	3.2	9
7	Signaling Pathways Underlying Anthracycline Cardiotoxicity. Antioxidants and Redox Signaling, 2020, 32, 1098-1114.	5.4	36
8	Inhaled Biologicals for the Treatment of Cystic Fibrosis. Recent Patents on Inflammation and Allergy Drug Discovery, 2019, 13, 19-26.	3.6	9
9	The novel butyrate derivative phenylalanineâ€butyramide protects from doxorubicinâ€induced cardiotoxicity. European Journal of Heart Failure, 2019, 21, 519-528.	7.1	80
10	New avenues in cardio-oncology. Aging, 2019, 11, 1075-1076.	3.1	4
11	Phosphoinositide 3-Kinase Gamma Inhibition Protects From Anthracycline Cardiotoxicity and Reduces Tumor Growth. Circulation, 2018, 138, 696-711.	1.6	145
12	Inhalation of the prodrug PI3K inhibitor CL27c improves lung function in asthma and fibrosis. Nature Communications, 2018, 9, 5232.	12.8	86
13	Therapeutic Targeting of PDEs and PI3K in Heart Failure with Preserved Ejection Fraction (HFpEF). Current Heart Failure Reports, 2017, 14, 187-196.	3.3	5
14	PI3K Signaling in Tissue Hyper-Proliferation: From Overgrowth Syndromes to Kidney Cysts. Cancers, 2017, 9, 30.	3.7	29
15	A New Transgenic Mouse Model of Heart Failure and Cardiac Cachexia Raised by Sustained Activation of Met Tyrosine Kinase in the Heart. BioMed Research International, 2016, 2016, 1-13.	1.9	10
16	Cardiac concentric hypertrophy promoted by activated Met receptor is mitigated in vivo by inhibition of Erk1,2 signalling with Pimasertib. Journal of Molecular and Cellular Cardiology, 2016, 93, 84-97.	1.9	12
17	Hepatocyte Growth Factor-mediated satellite cells niche perturbation promotes development of distinct sarcoma subtypes. ELife, 2016, 5, .	6.0	5
18	Cellular and molecular mechanisms of HGF/Met in the cardiovascular system. Clinical Science, 2015, 129, 1173-1193.	4.3	112

VALENTINA SALA

#	Article	IF	CITATIONS
19	Anti-Differentiation Effect of Oncogenic Met Receptor in Terminally-Differentiated Myotubes. Biomedicines, 2015, 3, 124-137.	3.2	3
20	HGF/Met Axis in Heart Function and Cardioprotection. Biomedicines, 2014, 2, 247-262.	3.2	32
21	Agonist antibodies activating the Met receptor protect cardiomyoblasts from cobalt chloride-induced apoptosis and autophagy. Cell Death and Disease, 2014, 5, e1185-e1185.	6.3	61
22	MicroRNAs in myocardial ischemia: identifying new targets and tools for treating heart disease. New frontiers for miR-medicine. Cellular and Molecular Life Sciences, 2014, 71, 1439-1452.	5.4	34
23	Gene expression profiling of HGF/Met activation in neonatal mouse heart. Transgenic Research, 2013, 22, 579-593.	2.4	12
24	Digoxin and ouabain induce the efflux of cholesterol via liver X receptor signalling and the synthesis of ATP in cardiomyocytes. Biochemical Journal, 2012, 447, 301-311.	3.7	27
25	Signaling to Cardiac Hypertrophy: Insights from Human and Mouse RASopathies. Molecular Medicine, 2012, 18, 938-947.	4.4	39
26	A mouse model for spatial and temporal expression of HGF in the heart. Transgenic Research, 2011, 20, 1203-1216.	2.4	8
27	Novel therapy for myocardial infarction: can HGF/Met be beneficial?. Cellular and Molecular Life Sciences, 2011, 68, 1703-1717.	5.4	42
28	Activated Met Signalling in the Developing Mouse Heart Leads to Cardiac Disease. PLoS ONE, 2011, 6, e14675.	2.5	15
29	High Levels of Cre Expression in Neuronal Progenitors Cause Defects in Brain Development Leading to Microencephaly and Hydrocephaly. Journal of Neuroscience, 2006, 26, 9593-9602.	3.6	152