

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3488369/publications.pdf

Version: 2024-02-01

17нлыс

#	Article	IF	CITATIONS
1	Automated creation and tuning of personalised muscle paths for OpenSim musculoskeletal models of the knee joint. Biomechanics and Modeling in Mechanobiology, 2021, 20, 521-533.	2.8	19
2	Towards rapid prediction of personalised muscle mechanics: integration with diffusion tensor imaging. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2020, 8, 492-500.	1.9	6
3	The morphology of the human mandible: A computational modelling study. Biomechanics and Modeling in Mechanobiology, 2020, 19, 1187-1202.	2.8	29
4	Relationship between lower lumbar spine shape and patient bone metabolic activity as characterised by 18F NaF bio-markers. Computers in Biology and Medicine, 2020, 116, 103529.	7.0	3
5	Influence of femoral external shape on internal architecture and fracture risk. Biomechanics and Modeling in Mechanobiology, 2020, 19, 1251-1261.	2.8	6
6	Rapid muscle volume prediction using anthropometric measurements and population-derived statistical models. Biomechanics and Modeling in Mechanobiology, 2020, 19, 1239-1249.	2.8	4
7	Automatic segmentation of the thumb trapeziometacarpal joint using parametric statistical shape modelling and random forest regression voting. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2019, 7, 297-301.	1.9	2
8	Development of an in situ procedure to evaluate the reticulo-rumen morphology of sheep selected for divergent methane emissions. Animal, 2019, 13, 542-548.	3.3	5
9	Statistical shape modelling versus linear scaling: Effects on predictions of hip joint centre location and muscle moment arms in people with hip osteoarthritis. Journal of Biomechanics, 2019, 85, 164-172.	2.1	47
10	Minimal medical imaging can accurately reconstruct geometric bone models for musculoskeletal models. PLoS ONE, 2019, 14, e0205628.	2.5	23
11	On the Use of Population-Based Statistical Models in Biomechanics. , 2019, , 229-237.		3
12	Virtual trial to evaluate the robustness of cementless femoral stems to patient and surgical variation. Journal of Biomechanics, 2019, 82, 346-356.	2.1	17
13	Influence of collars on the primary stability of cementless femoral stems: A finite element study using a diverse patient cohort. Journal of Orthopaedic Research, 2018, 36, 1185-1195.	2.3	34
14	Evaluating the primary stability of standard vs lateralised cementless femoral stems – A finite element study using a diverse patient cohort. Clinical Biomechanics, 2018, 59, 101-109.	1.2	10
15	Early morphologic changes in trapeziometacarpal joint bones with osteoarthritis. Osteoarthritis and Cartilage, 2018, 26, 1338-1344.	1.3	17
16	Point-cloud registration using adaptive radial basis functions. Computer Methods in Biomechanics and Biomedical Engineering, 2018, 21, 498-502.	1.6	15
17	Musculoskeletal Modelling and the Physiome Project. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2018, , 123-174.	0.6	10
18	Toward modeling locomotion using electromyographyâ€informed 3D models: application to cerebral palsy. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2017, 9, e1368.	6.6	31

J Zhang

#	Article	IF	CITATIONS
19	Accuracy of femur reconstruction from sparse geometric data using a statistical shape model. Computer Methods in Biomechanics and Biomedical Engineering, 2017, 20, 566-576.	1.6	37
20	Rapid Prediction of Personalised Muscle Mechanics: Integration with Diffusion Tensor Imaging. Lecture Notes in Computer Science, 2017, , 71-77.	1.3	3
21	Using partial least squares regression as a predictive tool in describing equine third metacarpal bone shape. Computer Methods in Biomechanics and Biomedical Engineering, 2017, 20, 1609-1612.	1.6	4
22	Trapeziometacarpal joint contact varies between men and women during three isometric functional tasks. Medical Engineering and Physics, 2017, 50, 43-49.	1.7	15
23	Lower limb estimation from sparse landmarks using an articulated shape model. Journal of Biomechanics, 2016, 49, 3875-3881.	2.1	60
24	Patient-specific finite element estimated femur strength as a predictor of the risk of hip fracture: the effect of methodological determinants. Osteoporosis International, 2016, 27, 2815-2822.	3.1	80
25	Predictive statistical models of baseline variations in 3-D femoral cortex morphology. Medical Engineering and Physics, 2016, 38, 450-457.	1.7	50
26	Multiscale musculoskeletal modelling, data–model fusion and electromyography-informed modelling. Interface Focus, 2016, 6, 20150084.	3.0	34
27	Men and women have similarly shaped carpometacarpal joint bones. Journal of Biomechanics, 2015, 48, 3420-3426.	2.1	38
28	An anatomical region-based statistical shape model of the human femur. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2014, 2, 176-185.	1.9	58
29	The MAP Client: User-Friendly Musculoskeletal Modelling Workflows. Lecture Notes in Computer Science, 2014, , 182-192.	1.3	44
30	Automatic Meshing of Femur Cortical Surfaces from Clinical CT Images. Lecture Notes in Computer Science, 2012, , 40-48.	1.3	3