Frank Seebacher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3487926/publications.pdf

Version: 2024-02-01

163 papers 7,455 citations

42 h-index 74108 75 g-index

164 all docs 164 docs citations

164 times ranked 6770 citing authors

#	Article	IF	CITATIONS
1	Endocrine disruption from plastic pollution and warming interact to increase the energetic cost of growth in a fish. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20212077.	1.2	9
2	Physiology can predict animal activity, exploration, and dispersal. Communications Biology, 2022, 5, 109.	2.0	7
3	Elevating the impact of conservation physiology by building a community devoted to excellence, transparency, ethics, integrity and mutual respect., 2022, 10, coac015.		1
4	Rates of warming impact oxidative stress in zebrafish (<i>Danio rerio</i>). Journal of Experimental Biology, 2022, 225, .	0.8	5
5	Evolution of plasticity: metabolic compensation for fluctuating energy demands at the origin of life. Journal of Experimental Biology, 2022, 225, .	0.8	2
6	Bisphenols impact hormone levels in animals: A meta-analysis. Science of the Total Environment, 2022, 828, 154533.	3.9	20
7	DNA methyltransferase 3a mediates developmental thermal plasticity. BMC Biology, 2021, 19, 11.	1.7	30
8	One hundred research questions in conservation physiology for generating actionable evidence to inform conservation policy and practice., 2021, 9, coab009.		29
9	Social rank and not physiological capacity determines competitive success in zebrafish (<i>Danio) Tj ETQq1 1 0.7</i>	784314 rg	BT ₄ /Overlock
10	Integrating Mitochondrial Aerobic Metabolism into Ecology and Evolution. Trends in Ecology and Evolution, 2021, 36, 321-332.	4.2	87
11	Water flow and temperature interact to determine oxidative status, swimming performance, and dispersal of mosquitofish (Gambusia holbrooki). Freshwater Biology, 2021, 66, 1366-1374.	1.2	2
12	Geographical bias in physiological data limits predictions of global change impacts. Functional Ecology, 2021, 35, 1572-1578.	1.7	22
13	Diet and temperature modify the relationship between energy use and ATP production to influence behavior in zebrafish (<i>Danio rerio</i>). Ecology and Evolution, 2021, 11, 9791-9803.	0.8	13
14	Plasticity of Performance Curves in Ectotherms: Individual Variation Modulates Population Responses to Environmental Change. Frontiers in Physiology, 2021, 12, 733305.	1.3	11
15	Bisphenols alter thermal responses and performance in zebrafish (<i>Danio rerio</i>)., 2021, 9, coaa138.		14
16	Two Locomotor Traits Show Different Patterns of Developmental Plasticity Between Closely Related Clonal and Sexual Fish. Frontiers in Physiology, 2021, 12, 740604.	1.3	4
17	Thermal adaptation in the honeybee (Apis mellifera) via changes to the structure of malate dehydrogenase. Journal of Experimental Biology, 2020, 223, .	0.8	5
18	Age-related changes in isolated mouse skeletal muscle function are dependent on sex, muscle, and contractility mode. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 319, R296-R314.	0.9	27

#	Article	IF	CITATIONS
19	Mismatched light and temperature cues disrupt locomotion and energetics via thyroid-dependent mechanisms., 2020, 8, coaa051.		6
20	Reframing conservation physiology to be more inclusive, integrative, relevant and forward-looking: reflections and a horizon scan., 2020, 8, coaa016.		25
21	Effect of the plastic pollutant bisphenol A on the biology of aquatic organisms: A metaâ€analysis. Global Change Biology, 2020, 26, 3821-3833.	4.2	82
22	Is Endothermy an Evolutionary By-Product?. Trends in Ecology and Evolution, 2020, 35, 503-511.	4.2	19
23	The impacts of climate change on the biomechanics of animals. , 2020, 8, coz102.		17
24	Importance of adipocyte browning in the evolution of endothermy. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190134.	1.8	14
25	Differences in oxidative status explain variation in thermal acclimation capacity between individual mosquitofish (<i>Gambusia holbrooki</i>). Functional Ecology, 2020, 34, 1380-1390.	1.7	24
26	What do warming waters mean for fish physiology and fisheries?. Journal of Fish Biology, 2020, 97, 328-340.	0.7	86
27	Increased wave action promotes muscle performance but increasing temperatures cause a tenacity–endurance trade-off in intertidal snails (Nerita atramentosa). , 2019, 7, coz039.		3
28	Increased physical activity does not improve obesity-induced decreases in muscle quality in zebrafish (Danio rerio). Journal of Applied Physiology, 2019, 127, 1802-1808.	1.2	3
29	Histone deacetylase activity mediates thermal plasticity in zebrafish (Danio rerio). Scientific Reports, 2019, 9, 8216.	1.6	14
30	Epigenetics of Social Behaviour. Trends in Ecology and Evolution, 2019, 34, 818-830.	4.2	25
31	Warming increases the cost of growth in a model vertebrate. Functional Ecology, 2019, 33, 1256-1266.	1.7	28
32	Cost of transport is a repeatable trait but is not determined by mitochondrial efficiency in zebrafish (<i>Danio rerio</i>). Journal of Experimental Biology, 2019, 222, .	0.8	8
33	Zebrafish (<i>Danio rerio)</i> as a Model for Sprint Exercise Training. Zebrafish, 2019, 16, 1-7.	0.5	5
34	Collective Behaviour: Physiology Determines Position. Current Biology, 2018, 28, R351-R354.	1.8	1
35	Casual movement speed but not maximal locomotor capacity predicts mate searching success. Journal of Evolutionary Biology, 2018, 31, 438-445.	0.8	4
36	The physiology of leadership in fish shoals: leaders have lower maximal metabolic rates and lower aerobic scope. Journal of Zoology, 2018, 305, 73-81.	0.8	13

3

#	Article	IF	CITATIONS
37	Oxygen- and capacity-limited thermal tolerance: blurring ecology and physiology. Journal of Experimental Biology, 2018, 221, .	0.8	204
38	Transgenerational effects and acclimation affect dispersal in guppies. Functional Ecology, 2018, 32, 1819-1831.	1.7	13
39	The evolution of metabolic regulation in animals. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2018, 224, 195-203.	0.7	26
40	The effects of obesity on skeletal muscle contractile function. Journal of Experimental Biology, 2018, 221, .	0.8	121
41	Living in flowing water increases resistance to ultraviolet B radiation. Journal of Experimental Biology, 2017, 220, 582-587.	0.8	11
42	Histone deacetylase activity modulates exercise-induced skeletal muscle plasticity in zebrafish (<i>Danio rerio</i>). American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 313, R35-R43.	0.9	21
43	Obesity-induced decreases in muscle performance are not reversed by weight loss. International Journal of Obesity, 2017, 41, 1271-1278.	1.6	24
44	The effect of obesity on the contractile performance of isolated mouse soleus, EDL, and diaphragm muscles. Journal of Applied Physiology, 2017, 122, 170-181.	1.2	48
45	Parental exposure modulates the effects of UV â€B on offspring in guppies. Functional Ecology, 2017, 31, 1082-1090.	1.7	13
46	The effects of 8 weeks voluntary wheel running on the contractile performance of isolated locomotory (soleus) and respiratory (diaphragm) skeletal muscle during early ageing. Journal of Experimental Biology, 2017, 220, 3733-3741.	0.8	12
47	Injury-mediated decrease in locomotor performance increases predation risk in schooling fish. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160232.	1.8	28
48	Differential effects of developmental thermal plasticity across three generations of guppies (Poecilia) Tj ETQq0 () 0 rgBT /C	verlock 10 Tf
49	Physiological mechanisms underlying animal social behaviour. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160231.	1.8	37
50	Plasticity of Performance Curves Can Buffer Reaction Rates from Body Temperature Variation in Active Endotherms. Frontiers in Physiology, 2017, 8, 575.	1.3	14
51	Acclimation, acclimatization, and seasonal variation in amphibians and reptiles., 2017,, 41-62.		4
52	Early exposure to ultraviolet-B radiation decreases immune function later in life., 2016, 4, cow037.		23
53	Molecular Detection of the <i>Sxta < /i>Gene from Saxitoxin-Producing <i>Alexandrium minutum < /i>ion Commercial Oysters. Journal of Shellfish Research, 2016, 35, 169-177.</i></i>	0.3	8
54	Ultraviolet B radiation alters movement and thermal selection of zebrafish ($\langle i \rangle$ Danio rerio $\langle i \rangle$). Biology Letters, 2016, 12, 20160258.	1.0	20

#	Article	IF	CITATIONS
55	Morphological differences between habitats are associated with physiological and behavioural trade-offs in stickleback (<i>Gasterosteus aculeatus</i>). Royal Society Open Science, 2016, 3, 160316.	1.1	15
56	Temperature modulates the effects of predation and competition on mosquito larvae. Ecological Entomology, 2016, 41, 668-675.	1.1	12
57	Acclimation, acclimatization, and seasonal variation in amphibians and reptiles., 2016,, 41-62.		4
58	Thyroid hormone influences muscle mechanics in carp (<i>Cyprinus carpio</i>) independently from SERCA activity. Journal of Experimental Biology, 2016, 219, 2806-2808.	0.8	5
59	Thermal conditions experienced during differentiation affect metabolic and contractile phenotypes of mouse myotubes. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 311, R457-R465.	0.9	12
60	<scp>UV</scp> â€B radiation interacts with temperature to determine animal performance. Functional Ecology, 2016, 30, 584-595.	1.7	31
61	Energetic cost determines voluntary movement speed only in familiar environments. Journal of Experimental Biology, 2016, 219, 1625-1631.	0.8	25
62	Evolution of Plasticity: Mechanistic Link between Development and Reversible Acclimation. Trends in Ecology and Evolution, 2016, 31, 237-249.	4.2	219
63	Facing the Heat: Does Desiccation and Thermal Stress Explain Patterns of Orientation in an Intertidal Invertebrate?. PLoS ONE, 2016, 11, e0150200.	1.1	6
64	Immune-Challenged Fish Up-Regulate Their Metabolic Scope to Support Locomotion. PLoS ONE, 2016, 11, e0166028.	1.1	30
65	Generalist–specialist trade-off during thermal acclimation. Royal Society Open Science, 2015, 2, 140251.	1.1	46
66	Warm temperature acclimation impacts metabolism of paralytic shellfish toxins from <i>Alexandrium minutum</i> in commercial oysters. Global Change Biology, 2015, 21, 3402-3413.	4.2	16
67	Inter-individual variation partially explains patterns of orientation on steeply sloped substrata in a keystone grazer, the limpet Cellana tramoserica. Aquatic Ecology, 2015, 49, 189-197.	0.7	0
68	UV-B exposure reduces locomotor performance by impairing muscle function but not mitochondrial ATP production. Journal of Experimental Biology, 2015, 219, 96-102.	0.8	14
69	Skeletal muscle contractile function predicts activity and behaviour in zebrafish. Journal of Experimental Biology, 2015, 218, 3878-3884.	0.8	26
70	Developmental thermal plasticity of prey modifies the impact of predation. Journal of Experimental Biology, 2015, 218, 1402-9.	0.8	16
71	It's not where you are, it's what you do after that matters: Tide-in patterns of orientation do not predict where or when limpets forage. Journal of Experimental Marine Biology and Ecology, 2015, 471, 119-125.	0.7	0
72	Plasticity of protective mechanisms only partially explains interactive effects of temperature and UVR on upper thermal limits. Comparative Biochemistry and Physiology Part A, Molecular & Eamp; Integrative Physiology, 2015, 190, 75-82.	0.8	11

#	Article	IF	CITATIONS
73	Building a dishonest signal: the functional basis of unreliable signals of strength in males of the two-toned fiddler crab, <i>Uca vomeris</i>). Journal of Experimental Biology, 2015, 218, 3077-82.	0.8	12
74	Climate change impacts on animal migration. Climate Change Responses, 2015, 2, .	2.6	45
75	Temperature determines toxicity: Bisphenol A reduces thermal tolerance in fish. Environmental Pollution, 2015, 197, 84-89.	3.7	52
76	Physiological plasticity increases resilience of ectothermic animals to climate change. Nature Climate Change, 2015, 5, 61-66.	8.1	678
77	Orientation in a keystone grazer: interactions between habitat and individual identity drive patterns of resting behaviour. Marine Ecology - Progress Series, 2015, 522, 145-156.	0.9	4
78	Addressing new challenges in climate change research by highlighting biological complexity. Climate Change Responses, 2014, 1, .	2.6	0
79	Exercise changes behaviour. Functional Ecology, 2014, 28, 652-659.	1.7	44
80	Early effects of ageing on the mechanical performance of isolated locomotory (EDL) and respiratory (diaphragm) skeletal muscle using the work-loop technique. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 307, R670-R684.	0.9	24
81	Trying to fit in: are patterns of orientation of a keystone grazer set by behavioural responses to ecosystem engineers or wave action?. Oecologia, 2014, 174, 67-75.	0.9	14
82	The cost of muscle power production: muscle oxygen consumption per unit work increases at low temperatures in <i>Xenopus laevis</i> Daudin. Journal of Experimental Biology, 2014, 217, 1940-5.	0.8	19
83	Regulation of thermal acclimation varies between generations of the shortâ€lived mosquitofish that developed in different environmental conditions. Functional Ecology, 2014, 28, 137-148.	1.7	49
84	Synergistic interaction between UVB radiation and temperature increases susceptibility to parasitic infection in a fish. Biology Letters, 2014, 10, 20140449.	1.0	29
85	The evolution of endothermy is explained by thyroid hormone-mediated responses to cold in early vertebrates. Journal of Experimental Biology, 2014, 217, 1642-1648.	0.8	62
86	Embryonic Developmental Temperatures Modulate Thermal Acclimation of Performance Curves in Tadpoles of the Frog Limnodynastes peronii. PLoS ONE, 2014, 9, e106492.	1.1	39
87	Thyroid hormone actions are temperature-specific and regulate thermal acclimation in zebrafish (Danio rerio). BMC Biology, 2013, 11, 26.	1.7	94
88	Thyroid hormone regulates cardiac performance during cold acclimation in Zebrafish (Danio rerio). Journal of Experimental Biology, 2013, 217, 718-25.	0.8	48
89	The active metabolic rate predicts a male spider's proximity to females and expected fitness. Biology Letters, 2013, 9, 20121164.	1.0	12

Thyroid hormone regulates muscle function during cold acclimation in zebrafish (<i>Danio) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62 Td $^{\circ}$ 0.8

#	Article	IF	Citations
91	Increased aggression during pregnancy comes at a higher metabolic cost. Journal of Experimental Biology, 2013, 216, 771-776.	0.8	61
92	Thermal acclimation of interactions: differential responses to temperature change alter predator–prey relationship. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 4058-4064.	1.2	130
93	Capacity for thermal acclimation differs between populations and phylogenetic lineages within a species. Functional Ecology, 2012, 26, 1418-1428.	1.7	56
94	Determining environmental causes of biological effects: the need for a mechanistic physiological dimension in conservation biology. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 1607-1614.	1.8	184
95	Sex cells in changing environments: can organisms adjust the physiological function of gametes to different temperatures?. Global Change Biology, 2012, 18, 1797-1803.	4.2	26
96	Coping with Thermal Challenges: Physiological Adaptations to Environmental Temperatures. , 2012, 2, 2151-2202.		247
97	How well do muscle biomechanics predict whole-animal locomotor performance? The role of Ca2+ handling. Journal of Experimental Biology, 2012, 215, 1847-1853.	0.8	37
98	Differences in locomotor performance between individuals: importance of parvalbumin, calcium handling and metabolism. Journal of Experimental Biology, 2012, 215, 663-670.	0.8	69
99	Thermal adaptation in endotherms: climate and phylogeny interact to determine populationâ€level responses in a wild rat. Functional Ecology, 2012, 26, 390-398.	1.7	24
100	Striped marsh frog (<i>Limnodynastes peronii</i>) tadpoles do not acclimate metabolic performance to thermal variability. Journal of Experimental Biology, 2011, 214, 1965-1970.	0.8	44
101	Adaptive Thermoregulation in Endotherms May Alter Responses to Climate Change. Integrative and Comparative Biology, 2011, 51, 676-690.	0.9	196
102	Daily torpor reduces mass and changes stress and power output of soleus and EDL muscles in the Djungarian hamster, Phodopus sungorus. Journal of Experimental Biology, 2011, 214, 2896-2902.	0.8	14
103	Aggressionâ€induced fin damage modulates tradeâ€offs in burst and endurance swimming performance of mosquitofish. Journal of Zoology, 2011, 283, 243-248.	0.8	22
104	Thermal acclimation, mitochondrial capacities and organ metabolic profiles in a reptile (Alligator) Tj ETQq0 0 0 rg Physiology, 2011, 181, 53-64.	BT /Overlo 0.7	ock 10 Tf 50 2 26
105	Physiology of invasion: cane toads are constrained by thermal effects on physiological mechanisms that support locomotor performance. Journal of Experimental Biology, 2011, 214, 1437-1444.	0.8	51
106	Variation in expression of calcium-handling proteins is associated with inter-individual differences in mechanical performance of rat (<i>Rattus norvegicus</i>) skeletal muscle. Journal of Experimental Biology, 2011, 214, 3542-3548.	0.8	24
107	Physiological and behavioural responses to seasonal changes in environmental temperature in the Australian spiny crayfish Euastacus sulcatus. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2010, 180, 653-660.	0.7	15
108	Plasticity in body temperature and metabolic capacity sustains winter activity in a small endotherm (Rattus fuscipes). Comparative Biochemistry and Physiology Part A, Molecular & (Integrative Physiology, 2010, 155, 383-391.	0.8	26

#	Article	IF	CITATIONS
109	Low Levels of Physical Activity Increase Metabolic Responsiveness to Cold in a Rat (Rattus fuscipes). PLoS ONE, 2010, 5, e13022.	1.1	41
110	AMP-activated protein kinase controls metabolism and heat production during embryonic development in birds. Journal of Experimental Biology, 2010, 213, 3167-3176.	0.8	17
111	Learning to hunt: the role of experience in predator success. Behaviour, 2010, 147, 223-233.	0.4	27
112	Plasticity of Oxidative Metabolism in Variable Climates: Molecular Mechanisms. Physiological and Biochemical Zoology, 2010, 83, 721-732.	0.6	105
113	Advantage to lower body temperatures for a small mammal (<i>Rattus fuscipes</i>) experiencing chronic cold. Journal of Mammalogy, 2010, 91, 1197-1204.	0.6	19
114	Costs and benefits of increased weapon size differ between sexes of the slender crayfish, <i>Cherax dispar</i> . Journal of Experimental Biology, 2009, 212, 853-858.	0.8	38
115	Adapting to Climate Change. Science, 2009, 323, 876-877.	6.0	48
116	Endothermy in birds: underlying molecular mechanisms. Journal of Experimental Biology, 2009, 212, 2328-2336.	0.8	82
117	Thermal Acclimation and Regulation of Metabolism in a Reptile (<i>Crocodylus porosus</i>): The Importance of Transcriptional Mechanisms and Membrane Composition. Physiological and Biochemical Zoology, 2009, 82, 766-775.	0.6	32
118	Responses to temperature variation: integration of thermoregulation and metabolism in vertebrates. Journal of Experimental Biology, 2009, 212, 2885-2891.	0.8	85
119	Can Phenotypic Plasticity Facilitate the Geographic Expansion of the Tilapia <i>Oreochromis mossambicus</i> ?. Physiological and Biochemical Zoology, 2008, 81, 733-742.	0.6	14
120	Plasticity of muscle function in a thermoregulating ectotherm (<i>Crocodylus porosus</i>): biomechanics and metabolism. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 294, R1024-R1032.	0.9	22
121	Novel reptilian uncoupling proteins: molecular evolution and gene expression during cold acclimation. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 979-985.	1.2	19
122	Molecular mechanisms underlying the development of endothermy in birds ($<$ i>Gallus gallus $<$ li>): a new role of PGC-11̂±?. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 293, R2315-R2322.	0.9	33
123	Beneficial acclimation: sex specific thermal acclimation of metabolic capacity in the striped marsh frog (<i>Limnodynastes peronii</i>). Journal of Experimental Biology, 2007, 210, 2932-2938.	0.8	32
124	Dishonest Signals of Strength in Male Slender Crayfish (<i>Cherax dispar</i>) during Agonistic Encounters. American Naturalist, 2007, 170, 284-291.	1.0	85
125	Individual recognition in crayfish (<i>Cherax dispar</i>): the roles of strength and experience in deciding aggressive encounters. Biology Letters, 2007, 3, 471-474.	1.0	44
126	Antarctic fish can compensate for rising temperatures: thermal acclimation of cardiac performance in <i>Pagothenia borchgrevinki</i> . Journal of Experimental Biology, 2007, 210, 3068-3074.	0.8	113

#	Article	IF	CITATIONS
127	Redistribution of blood within the body is important for thermoregulation in an ectothermic vertebrate (Crocodylus porosus). Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2007, 177, 841-848.	0.7	29
128	Transient Receptor Potential Ion Channels Control Thermoregulatory Behaviour in Reptiles. PLoS ONE, 2007, 2, e281.	1.1	42
129	Compensation for environmental change by complementary shifts of thermal sensitivity and thermoregulatory behaviour in an ectotherm. Journal of Experimental Biology, 2006, 209, 4869-4877.	0.8	117
130	Coadaptation: A Unifying Principle in Evolutionary Thermal Biology. Physiological and Biochemical Zoology, 2006, 79, 282-294.	0.6	248
131	Thermal biology of a viviparous lizard with temperature-dependant sex determination. Journal of Thermal Biology, 2006, 31, 292-301.	1.1	14
132	Phenotypic flexibility in the metabolic response of the limpet Cellana tramoserica to thermally different microhabitats. Journal of Experimental Marine Biology and Ecology, 2006, 335, 131-141.	0.7	43
133	Transition from ectothermy to endothermy: the development of metabolic capacity in a bird (Gallus) Tj ETQq1 1	0.784314 1.2	1 rgBT /Overl
134	Thermal sensitivity of heart rate and insensitivity of blood pressure in the Antarctic nototheniid fish Pagothenia borchgrevinki. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2005, 175, 97-105.	0.7	13
135	Physiological mechanisms of thermoregulation in reptiles: a review. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2005, 175, 533-541.	0.7	166
136	A review of thermoregulation and physiological performance in reptiles: what is the role of phenotypic flexibility?. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2005, 175, 453-461.	0.7	135
137	Diving Behaviour of a Reptile (Crocodylus johnstoni) in the Wild: Interactions with Heart Rate and Body Temperature. Physiological and Biochemical Zoology, 2005, 78, 1-8.	0.6	37
138	A falsification of the thermal specialization paradigm: compensation for elevated temperatures in Antarctic fishes. Biology Letters, 2005, 1, 151-154.	1.0	132
139	Evaluating Thermoregulation in Reptiles: The Fallacy of the Inappropriately Applied Method. Physiological and Biochemical Zoology, 2004, 77, 688-695.	0.6	86
140	Biochemical acclimation of metabolic enzymes in response to lowered temperature in tadpoles of Limnodynastes peronii. Comparative Biochemistry and Physiology Part A, Molecular & Engrative Physiology, 2004, 137, 731-738.	0.8	38
141	Physiological thermoregulation in a crustacean? Heart rate hysteresis in the freshwater crayfish Cherax destructor. Comparative Biochemistry and Physiology Part A, Molecular & Emp; Integrative Physiology, 2004, 138, 399-403.	0.8	17
142	Turtles (Chelodina longicollis) regulate muscle metabolic enzyme activity in response to seasonal variation in body temperature. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2004, 174, 205-210.	0.7	34
143	Integration of autonomic and local mechanisms in regulating cardiovascular responses to heating and cooling in a reptile (Crocodylus porosus). Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2004, 174, 577-85.	0.7	19
144	Cardiovascular mechanisms during thermoregulation in reptiles. International Congress Series, 2004, 1275, 242-249.	0.2	7

#	Article	IF	CITATIONS
145	Energetic cost of a meal in a frequent feeding lizard. Comparative Biochemistry and Physiology Part A, Molecular & Samp; Integrative Physiology, 2003, 135, 377-382.	0.8	24
146	Ontogenetic changes of swimming kinematics in a semi-aquatic reptile (Crocodylus porosus). Australian Journal of Zoology, 2003, 51, 15.	0.6	36
147	Sustained Swimming Performance in Crocodiles (Crocodylus porosus): Effects of Body Size and Temperature. Journal of Herpetology, 2003, 37, 363-368.	0.2	31
148	Dinosaur body temperatures: the occurrence of endothermy and ectothermy. Paleobiology, 2003, 29, 105-122.	1.3	77
149	Seasonal acclimatisation of muscle metabolic enzymes in a reptile(Alligator mississippiensis). Journal of Experimental Biology, 2003, 206, 1193-1200.	0.8	115
150	The effect of heat transfer mode on heart rate responses and hysteresis during heating and cooling in the estuarine crocodileCrocodylus porosus. Journal of Experimental Biology, 2003, 206, 1143-1151.	0.8	27
151	Prostaglandins are important in thermoregulation of a reptile (Pogona vitticeps). Proceedings of the Royal Society B: Biological Sciences, 2003, 270, S50-3.	1.2	24
152	An alternative method for predicting body mass: the case of the Pleistocene marsupial lion. Paleobiology, 2003, 29, 403-411.	1.3	44
153	Body Temperature Null Distributions in Reptiles with Nonzero Heat Capacity: Seasonal Thermoregulation in the American Alligator (Alligator mississippiensis). Physiological and Biochemical Zoology, 2003, 76, 348-359.	0.6	53
154	Facultative sex allocation in the viviparous lizard Eulamprus tympanum, a species with temperature-dependent sex determination. Australian Journal of Zoology, 2003, 51, 367.	0.6	25
155	Shelter Microhabitats Determine Body Temperature and Dehydration Rates of a Terrestrial Amphibian (Bufo marinus). Journal of Herpetology, 2002, 36, 69-75.	0.2	121
156	A new method to calculate allometric length-mass relationships of dinosaurs. Journal of Vertebrate Paleontology, 2001, 21, 51-60.	0.4	133
157	Changes in heart rate are important for thermoregulation in the varanid lizard Varanus varius. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2001, 171, 395-400.	0.7	35
158	Heat Transfer in a Microvascular Network: the Effect of Heart Rate on Heating and Cooling in Reptiles (Pogona barbata and Varanus varius). Journal of Theoretical Biology, 2000, 203, 97-109.	0.8	59
159	At the Crocodilian Heart of the Matter. Science, 2000, 289, 1687c-1688.	6.0	4
160	Behavioural Postures and the Rate of Body Temperature Change in Wild Freshwater Crocodiles, Crocodylus johnstoni. Physiological and Biochemical Zoology, 1999, 72, 57-63.	0.6	53
161	Field test of a paradigm: hysteresis of heart rate in thermoregulation by a free-ranging lizard (Pogona) Tj ETQq $1\ 1$	0,784314 1.2	1 rgBT /Oved
162	Movement and Microhabitat Use of a Terrestrial Amphibian (Bufo marinus) on a Tropical Island: Seasonal Variation and Environmental Correlates. Journal of Herpetology, 1999, 33, 208.	0.2	66

#	Article	lF	CITATIONS
163	Patterns of Body Temperature in Wild Freshwater Crocodiles, Crocodylus johnstoni: Thermoregulation versus Thermoconformity, Seasonal Acclimatization, and the Effect of Social Interactions. Copeia, 1997, 1997, 549.	1.4	68