
## Frank Seebacher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3487926/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                  | lF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Physiological plasticity increases resilience of ectothermic animals to climate change. Nature Climate Change, 2015, 5, 61-66.                                                                                                           | 8.1 | 678       |
| 2  | Coadaptation: A Unifying Principle in Evolutionary Thermal Biology. Physiological and Biochemical Zoology, 2006, 79, 282-294.                                                                                                            | 0.6 | 248       |
| 3  | Coping with Thermal Challenges: Physiological Adaptations to Environmental Temperatures. , 2012, 2, 2151-2202.                                                                                                                           |     | 247       |
| 4  | Evolution of Plasticity: Mechanistic Link between Development and Reversible Acclimation. Trends in Ecology and Evolution, 2016, 31, 237-249.                                                                                            | 4.2 | 219       |
| 5  | Oxygen- and capacity-limited thermal tolerance: blurring ecology and physiology. Journal of Experimental Biology, 2018, 221, .                                                                                                           | 0.8 | 204       |
| 6  | Adaptive Thermoregulation in Endotherms May Alter Responses to Climate Change. Integrative and Comparative Biology, 2011, 51, 676-690.                                                                                                   | 0.9 | 196       |
| 7  | Determining environmental causes of biological effects: the need for a mechanistic physiological dimension in conservation biology. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 1607-1614.        | 1.8 | 184       |
| 8  | Physiological mechanisms of thermoregulation in reptiles: a review. Journal of Comparative<br>Physiology B: Biochemical, Systemic, and Environmental Physiology, 2005, 175, 533-541.                                                     | 0.7 | 166       |
| 9  | A review of thermoregulation and physiological performance in reptiles: what is the role of<br>phenotypic flexibility?. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental<br>Physiology, 2005, 175, 453-461. | 0.7 | 135       |
| 10 | A new method to calculate allometric length-mass relationships of dinosaurs. Journal of Vertebrate<br>Paleontology, 2001, 21, 51-60.                                                                                                     | 0.4 | 133       |
| 11 | A falsification of the thermal specialization paradigm: compensation for elevated temperatures in<br>Antarctic fishes. Biology Letters, 2005, 1, 151-154.                                                                                | 1.0 | 132       |
| 12 | Thermal acclimation of interactions: differential responses to temperature change alter<br>predator–prey relationship. Proceedings of the Royal Society B: Biological Sciences, 2012, 279,<br>4058-4064.                                 | 1.2 | 130       |
| 13 | Shelter Microhabitats Determine Body Temperature and Dehydration Rates of a Terrestrial Amphibian<br>(Bufo marinus). Journal of Herpetology, 2002, 36, 69-75.                                                                            | 0.2 | 121       |
| 14 | The effects of obesity on skeletal muscle contractile function. Journal of Experimental Biology, 2018, 221, .                                                                                                                            | 0.8 | 121       |
| 15 | Compensation for environmental change by complementary shifts of thermal sensitivity and thermoregulatory behaviour in an ectotherm. Journal of Experimental Biology, 2006, 209, 4869-4877.                                              | 0.8 | 117       |
| 16 | Seasonal acclimatisation of muscle metabolic enzymes in a reptile(Alligator mississippiensis). Journal of Experimental Biology, 2003, 206, 1193-1200.                                                                                    | 0.8 | 115       |
| 17 | Antarctic fish can compensate for rising temperatures: thermal acclimation of cardiac performance in <i>Pagothenia borchgrevinki</i> . Journal of Experimental Biology, 2007, 210, 3068-3074.                                            | 0.8 | 113       |
| 18 | Plasticity of Oxidative Metabolism in Variable Climates: Molecular Mechanisms. Physiological and<br>Biochemical Zoology, 2010, 83, 721-732.                                                                                              | 0.6 | 105       |

| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Thyroid hormone actions are temperature-specific and regulate thermal acclimation in zebrafish<br>(Danio rerio). BMC Biology, 2013, 11, 26.                                                                                   | 1.7 | 94        |
| 20 | Integrating Mitochondrial Aerobic Metabolism into Ecology and Evolution. Trends in Ecology and Evolution, 2021, 36, 321-332.                                                                                                  | 4.2 | 87        |
| 21 | Evaluating Thermoregulation in Reptiles: The Fallacy of the Inappropriately Applied Method.<br>Physiological and Biochemical Zoology, 2004, 77, 688-695.                                                                      | 0.6 | 86        |
| 22 | What do warming waters mean for fish physiology and fisheries?. Journal of Fish Biology, 2020, 97, 328-340.                                                                                                                   | 0.7 | 86        |
| 23 | Dishonest Signals of Strength in Male Slender Crayfish ( <i>Cherax dispar</i> ) during Agonistic<br>Encounters. American Naturalist, 2007, 170, 284-291.                                                                      | 1.0 | 85        |
| 24 | Responses to temperature variation: integration of thermoregulation and metabolism in vertebrates.<br>Journal of Experimental Biology, 2009, 212, 2885-2891.                                                                  | 0.8 | 85        |
| 25 | Endothermy in birds: underlying molecular mechanisms. Journal of Experimental Biology, 2009, 212, 2328-2336.                                                                                                                  | 0.8 | 82        |
| 26 | Effect of the plastic pollutant bisphenol A on the biology of aquatic organisms: A metaâ€∎nalysis.<br>Global Change Biology, 2020, 26, 3821-3833.                                                                             | 4.2 | 82        |
| 27 | Dinosaur body temperatures: the occurrence of endothermy and ectothermy. Paleobiology, 2003, 29, 105-122.                                                                                                                     | 1.3 | 77        |
| 28 | Differences in locomotor performance between individuals: importance of parvalbumin, calcium<br>handling and metabolism. Journal of Experimental Biology, 2012, 215, 663-670.                                                 | 0.8 | 69        |
| 29 | Patterns of Body Temperature in Wild Freshwater Crocodiles, Crocodylus johnstoni:<br>Thermoregulation versus Thermoconformity, Seasonal Acclimatization, and the Effect of Social<br>Interactions. Copeia, 1997, 1997, 549.   | 1.4 | 68        |
| 30 | Movement and Microhabitat Use of a Terrestrial Amphibian (Bufo marinus) on a Tropical Island:<br>Seasonal Variation and Environmental Correlates. Journal of Herpetology, 1999, 33, 208.                                      | 0.2 | 66        |
| 31 | The evolution of endothermy is explained by thyroid hormone-mediated responses to cold in early vertebrates. Journal of Experimental Biology, 2014, 217, 1642-1648.                                                           | 0.8 | 62        |
| 32 | Increased aggression during pregnancy comes at a higher metabolic cost. Journal of Experimental<br>Biology, 2013, 216, 771-776.                                                                                               | 0.8 | 61        |
| 33 | Heat Transfer in a Microvascular Network: the Effect of Heart Rate on Heating and Cooling in Reptiles<br>(Pogona barbata and Varanus varius). Journal of Theoretical Biology, 2000, 203, 97-109.                              | 0.8 | 59        |
| 34 | Capacity for thermal acclimation differs between populations and phylogenetic lineages within a species. Functional Ecology, 2012, 26, 1418-1428.                                                                             | 1.7 | 56        |
| 35 | Behavioural Postures and the Rate of Body Temperature Change in Wild Freshwater Crocodiles,<br>Crocodylus johnstoni. Physiological and Biochemical Zoology, 1999, 72, 57-63.                                                  | 0.6 | 53        |
| 36 | Body Temperature Null Distributions in Reptiles with Nonzero Heat Capacity: Seasonal<br>Thermoregulation in the American Alligator (Alligator mississippiensis). Physiological and<br>Biochemical Zoology, 2003, 76, 348-359. | 0.6 | 53        |

| #  | Article                                                                                                                                                                                             | IF              | CITATIONS         |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------|
| 37 | Temperature determines toxicity: Bisphenol A reduces thermal tolerance in fish. Environmental<br>Pollution, 2015, 197, 84-89.                                                                       | 3.7             | 52                |
| 38 | Physiology of invasion: cane toads are constrained by thermal effects on physiological mechanisms that support locomotor performance. Journal of Experimental Biology, 2011, 214, 1437-1444.        | 0.8             | 51                |
| 39 | Field test of a paradigm: hysteresis of heart rate in thermoregulation by a free-ranging lizard (Pogona) Tj ETQq1 1                                                                                 | 0,784314<br>1.2 | ⊦rgBT /Ονει<br>≇9 |
| 40 | Regulation of thermal acclimation varies between generations of the shortâ€lived mosquitofish that developed in different environmental conditions. Functional Ecology, 2014, 28, 137-148.          | 1.7             | 49                |
| 41 | Adapting to Climate Change. Science, 2009, 323, 876-877.                                                                                                                                            | 6.0             | 48                |
| 42 | Thyroid hormone regulates cardiac performance during cold acclimation in Zebrafish (Danio rerio).<br>Journal of Experimental Biology, 2013, 217, 718-25.                                            | 0.8             | 48                |
| 43 | Thyroid hormone regulates muscle function during cold acclimation in zebrafish ( <i>Danio) Tj ETQq1 1 0.784314</i>                                                                                  | rgBT /Ove       | erlock 10 T       |
| 44 | The effect of obesity on the contractile performance of isolated mouse soleus, EDL, and diaphragm muscles. Journal of Applied Physiology, 2017, 122, 170-181.                                       | 1.2             | 48                |
| 45 | Generalist–specialist trade-off during thermal acclimation. Royal Society Open Science, 2015, 2, 140251.                                                                                            | 1.1             | 46                |
| 46 | Climate change impacts on animal migration. Climate Change Responses, 2015, 2, .                                                                                                                    | 2.6             | 45                |
| 47 | Differential effects of developmental thermal plasticity across three generations of guppies (Poecilia) Tj ETQq1 1                                                                                  | 0.784314<br>1.8 | rgBT /Ove         |
| 48 | An alternative method for predicting body mass: the case of the Pleistocene marsupial lion.<br>Paleobiology, 2003, 29, 403-411.                                                                     | 1.3             | 44                |
| 49 | Individual recognition in crayfish ( <i>Cherax dispar</i> ): the roles of strength and experience in deciding aggressive encounters. Biology Letters, 2007, 3, 471-474.                             | 1.0             | 44                |
| 50 | Striped marsh frog ( <i>Limnodynastes peronii</i> ) tadpoles do not acclimate metabolic performance<br>to thermal variability. Journal of Experimental Biology, 2011, 214, 1965-1970.               | 0.8             | 44                |
| 51 | Exercise changes behaviour. Functional Ecology, 2014, 28, 652-659.                                                                                                                                  | 1.7             | 44                |
| 52 | Phenotypic flexibility in the metabolic response of the limpet Cellana tramoserica to thermally<br>different microhabitats. Journal of Experimental Marine Biology and Ecology, 2006, 335, 131-141. | 0.7             | 43                |
| 53 | Transient Receptor Potential Ion Channels Control Thermoregulatory Behaviour in Reptiles. PLoS<br>ONE, 2007, 2, e281.                                                                               | 1.1             | 42                |
| 54 | Low Levels of Physical Activity Increase Metabolic Responsiveness to Cold in a Rat (Rattus fuscipes).<br>PLoS ONE, 2010, 5, e13022.                                                                 | 1.1             | 41                |

| #  | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Embryonic Developmental Temperatures Modulate Thermal Acclimation of Performance Curves in<br>Tadpoles of the Frog Limnodynastes peronii. PLoS ONE, 2014, 9, e106492.                                                                            | 1.1 | 39        |
| 56 | Biochemical acclimation of metabolic enzymes in response to lowered temperature in tadpoles of<br>Limnodynastes peronii. Comparative Biochemistry and Physiology Part A, Molecular & Integrative<br>Physiology, 2004, 137, 731-738.              | 0.8 | 38        |
| 57 | Costs and benefits of increased weapon size differ between sexes of the slender crayfish, <i>Cherax dispar</i> . Journal of Experimental Biology, 2009, 212, 853-858.                                                                            | 0.8 | 38        |
| 58 | Diving Behaviour of a Reptile (Crocodylus johnstoni) in the Wild: Interactions with Heart Rate and<br>Body Temperature. Physiological and Biochemical Zoology, 2005, 78, 1-8.                                                                    | 0.6 | 37        |
| 59 | How well do muscle biomechanics predict whole-animal locomotor performance? The role of Ca2+<br>handling. Journal of Experimental Biology, 2012, 215, 1847-1853.                                                                                 | 0.8 | 37        |
| 60 | Physiological mechanisms underlying animal social behaviour. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160231.                                                                                        | 1.8 | 37        |
| 61 | Ontogenetic changes of swimming kinematics in a semi-aquatic reptile (Crocodylus porosus).<br>Australian Journal of Zoology, 2003, 51, 15.                                                                                                       | 0.6 | 36        |
| 62 | Changes in heart rate are important for thermoregulation in the varanid lizard Varanus varius.<br>Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2001, 171,<br>395-400.                               | 0.7 | 35        |
| 63 | Turtles ( Chelodina longicollis ) regulate muscle metabolic enzyme activity in response to seasonal variation in body temperature. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2004, 174, 205-210. | 0.7 | 34        |
| 64 | Molecular mechanisms underlying the development of endothermy in birds ( <i>Gallus gallus</i> ): a<br>new role of PGC-11±?. American Journal of Physiology - Regulatory Integrative and Comparative<br>Physiology, 2007, 293, R2315-R2322.       | 0.9 | 33        |
| 65 | Beneficial acclimation: sex specific thermal acclimation of metabolic capacity in the striped marsh frog ( <i>Limnodynastes peronii</i> ). Journal of Experimental Biology, 2007, 210, 2932-2938.                                                | 0.8 | 32        |
| 66 | Thermal Acclimation and Regulation of Metabolism in a Reptile ( <i>Crocodylus porosus</i> ): The<br>Importance of Transcriptional Mechanisms and Membrane Composition. Physiological and Biochemical<br>Zoology, 2009, 82, 766-775.              | 0.6 | 32        |
| 67 | Sustained Swimming Performance in Crocodiles (Crocodylus porosus): Effects of Body Size and<br>Temperature. Journal of Herpetology, 2003, 37, 363-368.                                                                                           | 0.2 | 31        |
| 68 | <scp>UV</scp> â€B radiation interacts with temperature to determine animal performance. Functional Ecology, 2016, 30, 584-595.                                                                                                                   | 1.7 | 31        |
| 69 | DNA methyltransferase 3a mediates developmental thermal plasticity. BMC Biology, 2021, 19, 11.                                                                                                                                                   | 1.7 | 30        |
| 70 | Immune-Challenged Fish Up-Regulate Their Metabolic Scope to Support Locomotion. PLoS ONE, 2016, 11, e0166028.                                                                                                                                    | 1.1 | 30        |
| 71 | Redistribution of blood within the body is important for thermoregulation in an ectothermic<br>vertebrate (Crocodylus porosus). Journal of Comparative Physiology B: Biochemical, Systemic, and<br>Environmental Physiology, 2007, 177, 841-848. | 0.7 | 29        |
| 72 | Synergistic interaction between UVB radiation and temperature increases susceptibility to parasitic infection in a fish. Biology Letters, 2014, 10, 20140449.                                                                                    | 1.0 | 29        |

| 73One hundred research questions in conservation physiology for generating actionable evidence to<br>inform conservation policy and practice., 2021, 9, coab009.2974Injury-mediated decrease in locomotor performance increases predation risk in schooling fish.<br>Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160232.1.82875Warming increases the cost of growth in a model vertebrate. Functional Ecology, 2019, 33, 1256-1266.1.72876The effect of heat transfer mode on heart rate responses and hystereds during heating and cooling in<br>the estuarine crocodileCrocodylus porosus. Journal of Experimental Biology, 2003, 206, 1149-1151.0.82777Learning to hunt: the role of experience in predator success. Behaviour, 2010, 147, 223-233.0.42778Age-related changes in isolated mouse skeletal muscle function are dependent on sex, muscle, and<br>contractility mode. American Journal of Physiology. Pegulatory Integrative and Comparative<br>Physiology. 2010, 155, 383-391.0.82679Restrict in body temperature and netabolic capacity sustains winter activity in a small endotherm<br>(Physiology. 2010, 155, 383-391.0.82680Thermal acclimation, mitochondrial capacities and organ metabolic profiles in a reptile (Alligator) TJ ETQQ0 00 rgBT/Overlock 10 Eff<br>(Physiology. 2011, 181, 53-64.0.72681See cells in changing environments: can organisms adjust the physiology. 203, 51, 367.0.82682Seeleral muscle contractile function predicts activity and behaviour in zebrafish. Journal of<br>Biochemistry and Molecular Biology. 2018, 18, 1757-203.0.62583T           | #  | Article                                                                                                                                                                | IF  | CITATIONS |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 74       Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160232.       1.8       28         75       Warming increases the cost of growth in a model vertebrate. Functional Ecology, 2019, 33, 1256-1266.       1.7       28         76       The effect of heat transfer mode on hear rate responses and hysteresis during heating and cooling in the estuarine crocodileCrocodylus porosus. Journal of Experimental Biology, 2003, 206, 1143-1151.       0.8       27         77       Learning to hunt: the role of experience in predator success. Behaviour, 2010, 147, 223-233.       0.4       27         78       Physiology, 2020, 319, R296-R314.       0.9       27         79       Plasticity in body temperature and metabolic capacity sustains winter activity in a small endotherm (Rattus fuscipes). Comparative Biochemistry and Physiology Part A, Molecular Ramp; Integrative 0.8       26         79       Plasticity in body temperature and metabolic capacity sustains winter activity in a small endotherm (Rattus fuscipe). Comparative Biochemistry and Physiology Part A, Molecular Ramp; Integrative 0.8       26         79       Plasticity in body temperature and metabolic capacity sustains winter activity in a small endotherm (Rattus fuscipe). Comparative Biochemistry and Physiology Part A, Molecular Ramp; Integrative 0.8       26         80       Thermal acclimation, mitochondnial capacities and organ metabolic profiles in a reptile (Alligator) TJ ETQq0 0 0 rgBT (Overlock 10 TF Physiology, 2011, 181, 53-64.       6.7       26                   | 73 | One hundred research questions in conservation physiology for generating actionable evidence to inform conservation policy and practice. , 2021, 9, coab009.           |     | 29        |
| 76       The effect of heat transfer mode on heart rate responses and hysteresis during heating and cooling in the estuarine crocodileCrocodylus porosus. Journal of Experimental Biology, 2003, 206, 1143-1151.       0.8       27         77       Learning to hunt: the role of experience in predator success. Behaviour, 2010, 147, 223-233.       0.4       27         78       Age-related changes in isolated mouse skeletal muscle function are dependent on sex, muscle, and contractility mode. American journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 319, R296-R314.       0.9       27         79       Plasticity in body temperature and metabolic capacity sustains winter activity in a small endotherm (Physiology, 2020, 319, R296-R314.       0.8       26         79       (Plattus fuscipes). Comparative Biochemistry and Physiology Part A, Molecular & ampl. Integrative Physiology, 2010, 155, 383-391.       0.8       26         80       Thermal acclimation, mitochondrial capacities and organ metabolic profiles in a reptile (Alligator) TJ ETQq0 0 0 rgBT / Overlock 10 TF Physiology, 2011, 181, 53-64.       0.7       26         81       Sex cells in changing environments: can organisms adjust the physiological function of gametes to different temperatures?. Clobal Change Biology, 2012, 18, 1797-1803.       0.8       26         82       Sheletal muscle contractile function predicts activity and behaviour in zebrafish. Journal of Biology, 2015, 218, 3878-3884.       0.8       26         83       The evolution of metabolic regulation in animal | 74 |                                                                                                                                                                        | 1.8 | 28        |
| 76       the estuarine crocodileCrocodylus porosus. Journal of Experimental Biology, 2003, 206, 1143-1151.       0.8       27         77       Learning to hunt: the role of experience in predator success. Behaviour, 2010, 147, 223-233.       0.4       27         78       Age-related changes in isolated mouse skeletal muscle function are dependent on sex, muscle, and contractility mode. American Journal of Physiology - Regulatory Integrative and Comparative 0.9       27         79       Plasticity in body temperature and metabolic capacity sustains winter activity in a small endotherm (Rattus fuscipes). Comparative Biochemistry and Physiology Part A, Molecular & amp; Integrative 0.8       26         80       Physiology, 2011, 153, 383-391.       0.7       26         80       Physiology, 2011, 181, 53-64.       0.7       26         81       Sex cells in changing environments: can organisms adjust the physiological function of gametes to different temperatures?. Clobal Change Biology, 2012, 18, 1797-1803.       0.8       26         82       Skeletal muscle contractile function predicts activity and behaviour in zebrafish. Journal of Experimental Biology, 2015, 218, 3878-3884.       0.8       26         83       The evolution of metabolic regulation in animals. Comparative Biochemistry and Physiology - B       0.7       26         84       Facultative sex allocation in the viviparous lizard Eulamprus tympanum, a species with temperature-dependent sex determination. Australian Journal of Zoology, 2003, 51, 367.                                                    | 75 | Warming increases the cost of growth in a model vertebrate. Functional Ecology, 2019, 33, 1256-1266.                                                                   | 1.7 | 28        |
| Age-related changes in isolated mouse skeletal muscle function are dependent on sex, muscle, and<br>contractility mode. American Journal of Physiology - Regulatory Integrative and Comparative<br>Physiology, 2020, 319, R296-R314.0.92779Plasticity in body temperature and metabolic capacity sustains winter activity in a small endotherm<br>Physiology, 2010, 155, 383-391.0.82670Thermal acclimation, mitochondrial capacities and organ metabolic profiles in a reptile (Alligator) Tj ETQq0 0 0 rgBT /Overlock 10 Tf<br>Physiology, 2011, 181, 53-64.0.72681Sex cells in changing environments: can organisms adjust the physiological function of gametes to<br>different temperatures?. Clobal Change Biology, 2012, 18, 1797-1803.4.22682Skeletal muscle contractile function predicts activity and behaviour in zebrafish. Journal of<br>Experimental Biology, 2015, 218, 3878-3884.0.82683The evolution of metabolic regulation in animals. Comparative Biochemistry and Physiology - B<br>Biochemistry and Molecular Biology, 2018, 224, 195-203.0.62584Facultative sex allocation in the viviparous lizard Eulamprus tympanum, a species with<br>temperature-dependent sex determination. Australian Journal of Zoology, 2003, 51, 367.0.625                                                                                                                                                                                                                                                                                                                                                                                   | 76 |                                                                                                                                                                        | 0.8 | 27        |
| 78Contractility mode. American Journal of Physiology - Regulatory Integrative and Comparative0.92779Plasticity in body temperature and metabolic capacity sustains winter activity in a small endotherm<br>(Rattus fuscipes). Comparative Biochemistry and Physiology Part A, Molecular & amp; Integrative0.82670Plasticity in body temperature and metabolic capacity sustains winter activity in a small endotherm<br>(Rattus fuscipes). Comparative Biochemistry and Physiology Part A, Molecular & amp; Integrative0.82680Thermal acclimation, mitochondrial capacities and organ metabolic profiles in a reptile (Alligator) Tj ETQq0 0 0 rgBT/Overlock 10 Tf<br>Physiology, 2011, 181, 53-64.0.72681Sex cells in changing environments: can organisms adjust the physiological function of gametes to<br>different temperatures?. Clobal Change Biology, 2012, 18, 1797-1803.4.22682Skeletal muscle contractile function predicts activity and behaviour in zebrafish. Journal of<br>Experimental Biology, 2015, 218, 3878-3884.0.82683The evolution of metabolic regulation in animals. Comparative Biochemistry and Physiology - B<br>Biochemistry and Molecular Biology, 2018, 224, 195-203.0.62584Facultative sex allocation in the viviparous lizard Eulamprus tympanum, a species with<br>temperature-dependent sex determination. Australian Journal of Zoology, 2003, 51, 367.0.625                                                                                                                                                                                                                                              | 77 | Learning to hunt: the role of experience in predator success. Behaviour, 2010, 147, 223-233.                                                                           | 0.4 | 27        |
| 79(Rattus fuscipes). Comparative Biochemistry and Physiology Part A, Moleculár & amp; Integrative<br>Physiology, 2010, 155, 383-391.2680Thermal acclimation, mitochondrial capacities and organ metabolic profiles in a reptile (Alligator) Tj ETQq0 0 0 rgBT /Overlock 10 Tf<br>0.7 2680Physiology, 2011, 181, 53-64.81Sex cells in changing environments: can organisms adjust the physiological function of gametes to<br>different temperatures?. Clobal Change Biology, 2012, 18, 1797-1803.82Skeletal muscle contractile function predicts activity and behaviour in zebrafish. Journal of<br>Experimental Biology, 2015, 218, 3878-3884.83The evolution of metabolic regulation in animals. Comparative Biochemistry and Physiology - B<br>Biochemistry and Molecular Biology, 2018, 224, 195-203.0.784Facultative sex allocation in the viviparous lizard Eulamprus tympanum, a species with<br>temperature-dependent sex determination. Australian Journal of Zoology, 2003, 51, 367.0.625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 78 | contractility mode. American Journal of Physiology - Regulatory Integrative and Comparative                                                                            | 0.9 | 27        |
| 800.72681Sex cells in changing environments: can organisms adjust the physiological function of gametes to<br>different temperatures?. Global Change Biology, 2012, 18, 1797-1803.4.22682Skeletal muscle contractile function predicts activity and behaviour in zebrafish. Journal of<br>Experimental Biology, 2015, 218, 3878-3884.0.82683The evolution of metabolic regulation in animals. Comparative Biochemistry and Physiology - B<br>Biochemistry and Molecular Biology, 2018, 224, 195-203.0.72684Facultative sex allocation in the viviparous lizard Eulamprus tympanum, a species with<br>temperature-dependent sex determination. Australian Journal of Zoology, 2003, 51, 367.0.625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 79 | (Rattus fuscipes). Comparative Biochemistry and Physiology Part A, Molecular & Amp; Integrative                                                                        | 0.8 | 26        |
| ofdifferent temperatures?. Global Change Biology, 2012, 18, 1797-1803.4.22082Skeletal muscle contractile function predicts activity and behaviour in zebrafish. Journal of<br>Experimental Biology, 2015, 218, 3878-3884.0.82683The evolution of metabolic regulation in animals. Comparative Biochemistry and Physiology - B<br>Biochemistry and Molecular Biology, 2018, 224, 195-203.0.72684Facultative sex allocation in the viviparous lizard Eulamprus tympanum, a species with<br>temperature-dependent sex determination. Australian Journal of Zoology, 2003, 51, 367.0.62585Energetic cost determines voluntary movement speed only in familiar environments. Journal of0.00.00.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 80 |                                                                                                                                                                        |     |           |
| 82       Experimental Biology, 2015, 218, 3878-3884.       0.8       26         83       The evolution of metabolic regulation in animals. Comparative Biochemistry and Physiology - B       0.7       26         83       Facultative sex allocation in the viviparous lizard Eulamprus tympanum, a species with temperature-dependent sex determination. Australian Journal of Zoology, 2003, 51, 367.       0.6       25         84       Energetic cost determines voluntary movement speed only in familiar environments. Journal of       0.6       25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 81 | Sex cells in changing environments: can organisms adjust the physiological function of gametes to different temperatures?. Global Change Biology, 2012, 18, 1797-1803. | 4.2 | 26        |
| 83       Biochemistry and Molecular Biology, 2018, 224, 195-203.       0.7       26         84       Facultative sex allocation in the viviparous lizard Eulamprus tympanum, a species with temperature-dependent sex determination. Australian Journal of Zoology, 2003, 51, 367.       0.6       25         85       Energetic cost determines voluntary movement speed only in familiar environments. Journal of       0.0       25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 82 |                                                                                                                                                                        | 0.8 | 26        |
| temperature-dependent sex determination. Australian Journal of Zoology, 2003, 51, 367.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 83 |                                                                                                                                                                        | 0.7 | 26        |
| Energetic cost determines voluntary movement speed only in familiar environments. Journal of 0.8 25<br>Experimental Biology, 2016, 219, 1625-1631.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 84 |                                                                                                                                                                        | 0.6 | 25        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 85 | Energetic cost determines voluntary movement speed only in familiar environments. Journal of Experimental Biology, 2016, 219, 1625-1631.                               | 0.8 | 25        |
| Epigenetics of Social Behaviour. Trends in Ecology and Evolution, 2019, 34, 818-830. 4.2 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 86 | Epigenetics of Social Behaviour. Trends in Ecology and Evolution, 2019, 34, 818-830.                                                                                   | 4.2 | 25        |
| <ul> <li>Reframing conservation physiology to be more inclusive, integrative, relevant and forward-looking:</li> <li>25</li> <li>reflections and a horizon scan. , 2020, 8, coaa016.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 87 | Reframing conservation physiology to be more inclusive, integrative, relevant and forward-looking: reflections and a horizon scan. , 2020, 8, coaa016.                 |     | 25        |
| <ul> <li>Energetic cost of a meal in a frequent feeding lizard. Comparative Biochemistry and Physiology Part A,</li> <li>Molecular &amp; Comparative Physiology, 2003, 135, 377-382.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 88 | Energetic cost of a meal in a frequent feeding lizard. Comparative Biochemistry and Physiology Part A,<br>Molecular & Integrative Physiology, 2003, 135, 377-382.      | 0.8 | 24        |
| <ul> <li>Prostaglandins are important in thermoregulation of a reptile (Pogona vitticeps). Proceedings of the</li> <li>Royal Society B: Biological Sciences, 2003, 270, S50-3.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 89 | Prostaglandins are important in thermoregulation of a reptile ( Pogona vitticeps ). Proceedings of the<br>Royal Society B: Biological Sciences, 2003, 270, S50-3.      | 1.2 | 24        |

 $_{90}$  Transition from ectothermy to endothermy: the development of metabolic capacity in a bird (Gallus) Tj ETQq0 0 0  $_{122}$  /Overlock 10 Tf

| #   | Article                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Variation in expression of calcium-handling proteins is associated with inter-individual differences in mechanical performance of rat ( <i>Rattus norvegicus</i> ) skeletal muscle. Journal of Experimental Biology, 2011, 214, 3542-3548.                                    | 0.8 | 24        |
| 92  | Thermal adaptation in endotherms: climate and phylogeny interact to determine populationâ€level responses in a wild rat. Functional Ecology, 2012, 26, 390-398.                                                                                                               | 1.7 | 24        |
| 93  | Early effects of ageing on the mechanical performance of isolated locomotory (EDL) and respiratory<br>(diaphragm) skeletal muscle using the work-loop technique. American Journal of Physiology -<br>Regulatory Integrative and Comparative Physiology, 2014, 307, R670-R684. | 0.9 | 24        |
| 94  | Obesity-induced decreases in muscle performance are not reversed by weight loss. International Journal of Obesity, 2017, 41, 1271-1278.                                                                                                                                       | 1.6 | 24        |
| 95  | Differences in oxidative status explain variation in thermal acclimation capacity between individual mosquitofish ( <i>Gambusia holbrooki</i> ). Functional Ecology, 2020, 34, 1380-1390.                                                                                     | 1.7 | 24        |
| 96  | Early exposure to ultraviolet-B radiation decreases immune function later in life. , 2016, 4, cow037.                                                                                                                                                                         |     | 23        |
| 97  | Plasticity of muscle function in a thermoregulating ectotherm ( <i>Crocodylus porosus</i> ):<br>biomechanics and metabolism. American Journal of Physiology - Regulatory Integrative and<br>Comparative Physiology, 2008, 294, R1024-R1032.                                   | 0.9 | 22        |
| 98  | Aggressionâ€induced fin damage modulates tradeâ€offs in burst and endurance swimming performance of mosquitofish. Journal of Zoology, 2011, 283, 243-248.                                                                                                                     | 0.8 | 22        |
| 99  | Geographical bias in physiological data limits predictions of global change impacts. Functional<br>Ecology, 2021, 35, 1572-1578.                                                                                                                                              | 1.7 | 22        |
| 100 | Histone deacetylase activity modulates exercise-induced skeletal muscle plasticity in zebrafish<br>( <i>Danio rerio</i> ). American Journal of Physiology - Regulatory Integrative and Comparative<br>Physiology, 2017, 313, R35-R43.                                         | 0.9 | 21        |
| 101 | Ultraviolet B radiation alters movement and thermal selection of zebrafish ( <i>Danio rerio</i> ).<br>Biology Letters, 2016, 12, 20160258.                                                                                                                                    | 1.0 | 20        |
| 102 | Bisphenols impact hormone levels in animals: A meta-analysis. Science of the Total Environment, 2022, 828, 154533.                                                                                                                                                            | 3.9 | 20        |
| 103 | Integration of autonomic and local mechanisms in regulating cardiovascular responses to heating and cooling in a reptile (Crocodylus porosus). Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2004, 174, 577-85.                   | 0.7 | 19        |
| 104 | Novel reptilian uncoupling proteins: molecular evolution and gene expression during cold acclimation. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 979-985.                                                                                            | 1.2 | 19        |
| 105 | Advantage to lower body temperatures for a small mammal ( <i>Rattus fuscipes</i> ) experiencing chronic cold. Journal of Mammalogy, 2010, 91, 1197-1204.                                                                                                                      | 0.6 | 19        |
| 106 | The cost of muscle power production: muscle oxygen consumption per unit work increases at low temperatures in <i>Xenopus laevis</i> Daudin. Journal of Experimental Biology, 2014, 217, 1940-5.                                                                               | 0.8 | 19        |
| 107 | Is Endothermy an Evolutionary By-Product?. Trends in Ecology and Evolution, 2020, 35, 503-511.                                                                                                                                                                                | 4.2 | 19        |
| 108 | Physiological thermoregulation in a crustacean? Heart rate hysteresis in the freshwater crayfish<br>Cherax destructor. Comparative Biochemistry and Physiology Part A, Molecular & Integrative<br>Physiology, 2004, 138, 399-403.                                             | 0.8 | 17        |

| #   | Article                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | AMP-activated protein kinase controls metabolism and heat production during embryonic development in birds. Journal of Experimental Biology, 2010, 213, 3167-3176.                                                                                                | 0.8 | 17        |
| 110 | The impacts of climate change on the biomechanics of animals. , 2020, 8, coz102.                                                                                                                                                                                  |     | 17        |
| 111 | Warm temperature acclimation impacts metabolism of paralytic shellfish toxins from <i>Alexandrium minutum</i> in commercial oysters. Global Change Biology, 2015, 21, 3402-3413.                                                                                  | 4.2 | 16        |
| 112 | Developmental thermal plasticity of prey modifies the impact of predation. Journal of Experimental Biology, 2015, 218, 1402-9.                                                                                                                                    | 0.8 | 16        |
| 113 | Physiological and behavioural responses to seasonal changes in environmental temperature in the<br>Australian spiny crayfish Euastacus sulcatus. Journal of Comparative Physiology B: Biochemical,<br>Systemic, and Environmental Physiology, 2010, 180, 653-660. | 0.7 | 15        |
| 114 | Morphological differences between habitats are associated with physiological and behavioural<br>trade-offs in stickleback ( <i>Gasterosteus aculeatus</i> ). Royal Society Open Science, 2016, 3, 160316.                                                         | 1.1 | 15        |
| 115 | Thermal biology of a viviparous lizard with temperature-dependant sex determination. Journal of<br>Thermal Biology, 2006, 31, 292-301.                                                                                                                            | 1.1 | 14        |
| 116 | Can Phenotypic Plasticity Facilitate the Geographic Expansion of the Tilapia <i>Oreochromis mossambicus</i> ?. Physiological and Biochemical Zoology, 2008, 81, 733-742.                                                                                          | 0.6 | 14        |
| 117 | Daily torpor reduces mass and changes stress and power output of soleus and EDL muscles in the<br>Djungarian hamster, Phodopus sungorus. Journal of Experimental Biology, 2011, 214, 2896-2902.                                                                   | 0.8 | 14        |
| 118 | Trying to fit in: are patterns of orientation of a keystone grazer set by behavioural responses to ecosystem engineers or wave action?. Oecologia, 2014, 174, 67-75.                                                                                              | 0.9 | 14        |
| 119 | UV-B exposure reduces locomotor performance by impairing muscle function but not mitochondrial ATP production. Journal of Experimental Biology, 2015, 219, 96-102.                                                                                                | 0.8 | 14        |
| 120 | Plasticity of Performance Curves Can Buffer Reaction Rates from Body Temperature Variation in Active Endotherms. Frontiers in Physiology, 2017, 8, 575.                                                                                                           | 1.3 | 14        |
| 121 | Histone deacetylase activity mediates thermal plasticity in zebrafish (Danio rerio). Scientific Reports,<br>2019, 9, 8216.                                                                                                                                        | 1.6 | 14        |
| 122 | Importance of adipocyte browning in the evolution of endothermy. Philosophical Transactions of the<br>Royal Society B: Biological Sciences, 2020, 375, 20190134.                                                                                                  | 1.8 | 14        |
| 123 | Bisphenols alter thermal responses and performance in zebrafish ( <i>Danio rerio</i> ). , 2021, 9, coaa138.                                                                                                                                                       |     | 14        |
| 124 | Thermal sensitivity of heart rate and insensitivity of blood pressure in the Antarctic nototheniid fish<br>Pagothenia borchgrevinki. Journal of Comparative Physiology B: Biochemical, Systemic, and<br>Environmental Physiology, 2005, 175, 97-105.              | 0.7 | 13        |
| 125 | Parental exposure modulates the effects of UV â€B on offspring in guppies. Functional Ecology, 2017, 31, 1082-1090.                                                                                                                                               | 1.7 | 13        |
| 126 | The physiology of leadership in fish shoals: leaders have lower maximal metabolic rates and lower aerobic scope. Journal of Zoology, 2018, 305, 73-81.                                                                                                            | 0.8 | 13        |

| #   | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Transgenerational effects and acclimation affect dispersal in guppies. Functional Ecology, 2018, 32, 1819-1831.                                                                                                                             | 1.7 | 13        |
| 128 | Diet and temperature modify the relationship between energy use and ATP production to influence behavior in zebrafish ( <i>Danio rerio</i> ). Ecology and Evolution, 2021, 11, 9791-9803.                                                   | 0.8 | 13        |
| 129 | The active metabolic rate predicts a male spider's proximity to females and expected fitness. Biology<br>Letters, 2013, 9, 20121164.                                                                                                        | 1.0 | 12        |
| 130 | Building a dishonest signal: the functional basis of unreliable signals of strength in males of the two-toned fiddler crab, <i>Uca vomeris</i> . Journal of Experimental Biology, 2015, 218, 3077-82.                                       | 0.8 | 12        |
| 131 | Temperature modulates the effects of predation and competition on mosquito larvae. Ecological Entomology, 2016, 41, 668-675.                                                                                                                | 1.1 | 12        |
| 132 | Thermal conditions experienced during differentiation affect metabolic and contractile phenotypes of mouse myotubes. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 311, R457-R465.              | 0.9 | 12        |
| 133 | The effects of 8 weeks voluntary wheel running on the contractile performance of isolated<br>locomotory (soleus) and respiratory (diaphragm) skeletal muscle during early ageing. Journal of<br>Experimental Biology, 2017, 220, 3733-3741. | 0.8 | 12        |
| 134 | Plasticity of protective mechanisms only partially explains interactive effects of temperature and UVR<br>on upper thermal limits. Comparative Biochemistry and Physiology Part A, Molecular & Integrative<br>Physiology, 2015, 190, 75-82. | 0.8 | 11        |
| 135 | Living in flowing water increases resistance to ultraviolet B radiation. Journal of Experimental Biology, 2017, 220, 582-587.                                                                                                               | 0.8 | 11        |
| 136 | Plasticity of Performance Curves in Ectotherms: Individual Variation Modulates Population Responses to Environmental Change. Frontiers in Physiology, 2021, 12, 733305.                                                                     | 1.3 | 11        |
| 137 | Endocrine disruption from plastic pollution and warming interact to increase the energetic cost of growth in a fish. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20212077.                                          | 1.2 | 9         |
| 138 | Molecular Detection of the <i>Sxta</i> Gene from Saxitoxin-Producing <i>Alexandrium minutum</i> in<br>Commercial Oysters. Journal of Shellfish Research, 2016, 35, 169-177.                                                                 | 0.3 | 8         |
| 139 | Cost of transport is a repeatable trait but is not determined by mitochondrial efficiency in zebrafish<br>( <i>Danio rerio</i> ). Journal of Experimental Biology, 2019, 222, .                                                             | 0.8 | 8         |
| 140 | Cardiovascular mechanisms during thermoregulation in reptiles. International Congress Series, 2004, 1275, 242-249.                                                                                                                          | 0.2 | 7         |
| 141 | Physiology can predict animal activity, exploration, and dispersal. Communications Biology, 2022, 5, 109.                                                                                                                                   | 2.0 | 7         |
| 142 | Mismatched light and temperature cues disrupt locomotion and energetics via thyroid-dependent mechanisms. , 2020, 8, coaa051.                                                                                                               |     | 6         |
| 143 | Facing the Heat: Does Desiccation and Thermal Stress Explain Patterns of Orientation in an Intertidal<br>Invertebrate?. PLoS ONE, 2016, 11, e0150200.                                                                                       | 1.1 | 6         |
| 144 | Thyroid hormone influences muscle mechanics in carp ( <i>Cyprinus carpio</i> ) independently from SERCA activity. Journal of Experimental Biology, 2016, 219, 2806-2808.                                                                    | 0.8 | 5         |

| #   | Article                                                                                                                                                                                     | IF               | CITATIONS     |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------|
| 145 | Zebrafish ( <i>Danio rerio)</i> as a Model for Sprint Exercise Training. Zebrafish, 2019, 16, 1-7.                                                                                          | 0.5              | 5             |
| 146 | Thermal adaptation in the honeybee (Apis mellifera) via changes to the structure of malate dehydrogenase. Journal of Experimental Biology, 2020, 223, .                                     | 0.8              | 5             |
| 147 | Rates of warming impact oxidative stress in zebrafish ( <i>Danio rerio</i> ). Journal of Experimental<br>Biology, 2022, 225, .                                                              | 0.8              | 5             |
| 148 | Acclimation, acclimatization, and seasonal variation in amphibians and reptiles. , 2016, , 41-62.                                                                                           |                  | 4             |
| 149 | Casual movement speed but not maximal locomotor capacity predicts mate searching success. Journal of Evolutionary Biology, 2018, 31, 438-445.                                               | 0.8              | 4             |
| 150 | Social rank and not physiological capacity determines competitive success in zebrafish ( <i>Danio) Tj ETQq0 0 0 r</i>                                                                       | gBT /Ovei<br>1.1 | locန 10 Tf 50 |
| 151 | At the Crocodilian Heart of the Matter. Science, 2000, 289, 1687c-1688.                                                                                                                     | 6.0              | 4             |
| 152 | Acclimation, acclimatization, and seasonal variation in amphibians and reptiles. , 2017, , 41-62.                                                                                           |                  | 4             |
| 153 | Orientation in a keystone grazer: interactions between habitat and individual identity drive patterns of resting behaviour. Marine Ecology - Progress Series, 2015, 522, 145-156.           | 0.9              | 4             |
| 154 | Two Locomotor Traits Show Different Patterns of Developmental Plasticity Between Closely Related<br>Clonal and Sexual Fish. Frontiers in Physiology, 2021, 12, 740604.                      | 1.3              | 4             |
| 155 | Increased wave action promotes muscle performance but increasing temperatures cause a<br>tenacity–endurance trade-off in intertidal snails (Nerita atramentosa). , 2019, 7, coz039.         |                  | 3             |
| 156 | Increased physical activity does not improve obesity-induced decreases in muscle quality in zebrafish<br>(Danio rerio). Journal of Applied Physiology, 2019, 127, 1802-1808.                | 1.2              | 3             |
| 157 | Water flow and temperature interact to determine oxidative status, swimming performance, and dispersal of mosquitofish ( Gambusia holbrooki ). Freshwater Biology, 2021, 66, 1366-1374.     | 1.2              | 2             |
| 158 | Evolution of plasticity: metabolic compensation for fluctuating energy demands at the origin of life.<br>Journal of Experimental Biology, 2022, 225, .                                      | 0.8              | 2             |
| 159 | Collective Behaviour: Physiology Determines Position. Current Biology, 2018, 28, R351-R354.                                                                                                 | 1.8              | 1             |
| 160 | Elevating the impact of conservation physiology by building a community devoted to excellence, transparency, ethics, integrity and mutual respect. , 2022, 10, coac015.                     |                  | 1             |
| 161 | Addressing new challenges in climate change research by highlighting biological complexity. Climate<br>Change Responses, 2014, 1, .                                                         | 2.6              | 0             |
| 162 | Inter-individual variation partially explains patterns of orientation on steeply sloped substrata in a keystone grazer, the limpet Cellana tramoserica. Aquatic Ecology, 2015, 49, 189-197. | 0.7              | 0             |

| #   | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | It's not where you are, it's what you do after that matters: Tide-in patterns of orientation do not<br>predict where or when limpets forage. Journal of Experimental Marine Biology and Ecology, 2015, 471,<br>119-125. | 0.7 | 0         |