Osvaldo Campanella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3487738/publications.pdf Version: 2024-02-01

		76196	138251
221	5,738	40	58
papers	citations	h-index	g-index
224	224	224	4000
234	234	234	4906
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms. Frontiers in Cellular and Infection Microbiology, 2015, 5, 10.	1.8	248
2	Thermal aggregation and gelation of bovine \hat{l}^2 -lactoglobulin. Food Hydrocolloids, 1994, 8, 441-453.	5.6	115
3	Electrophoretic characterization of the protein products formed during heat treatment of whey protein concentrate solutions. Journal of Dairy Research, 1998, 65, 79-91.	0.7	112
4	Storage retrogradation behavior of sorghum, maize and rice starch pastes related to amylopectin fine structure. Journal of Cereal Science, 2009, 50, 74-81.	1.8	89
5	A Review on Methods and Theories to Describe the Glass Transition Phenomenon: Applications in Food and Pharmaceutical Products. Food Engineering Reviews, 2009, 1, 105-132.	3.1	87
6	Elucidation of stabilizing oil-in-water Pickering emulsion with different modified maize starch-based nanoparticles. Food Chemistry, 2017, 229, 152-158.	4.2	87
7	Characterization of starch–water interactions and their effects on two key functional properties: starch gelatinization and retrogradation. Current Opinion in Food Science, 2021, 39, 103-109.	4.1	87
8	Squeezing Flow Viscosimetry of Peanut Butter. Journal of Food Science, 1987, 52, 180-184.	1.5	80
9	Thermal gelation and denaturation of bovine <i>l²</i> -lactoglobulins A and B. Journal of Dairy Research, 1994, 61, 221-232.	0.7	78
10	Theoretical comparison of a new and the traditional method to calculateClostridium botulinum survival during thermal inactivation. Journal of the Science of Food and Agriculture, 2001, 81, 1069-1076.	1.7	72
11	Rheological Properties of Dough During Mechanical Dough Development. Journal of Cereal Science, 2000, 32, 293-306.	1.8	71
12	The use of ultrasound and shear oscillatory tests to characterize the effect of mixing time on the rheological properties of dough. Food Research International, 2004, 37, 567-577.	2.9	71
13	Elongational Viscosity Measurements of Melting American Process Cheese. Journal of Food Science, 1987, 52, 1249-1251.	1.5	69
14	A Study on Staling Characteristics of Gluten-Free Breads Prepared with Chestnut and Rice Flours. Food and Bioprocess Technology, 2014, 7, 806-820.	2.6	69
15	Quantitative approach to study secondary structure of proteins by FT-IR spectroscopy, using a model wheat gluten system. International Journal of Biological Macromolecules, 2020, 164, 2753-2760.	3.6	69
16	Squeezing Flow Viscometry for Nonelastic Semiliquid Foods — Theory and Applications. Critical Reviews in Food Science and Nutrition, 2002, 42, 241-264.	5.4	68
17	Importance of extensional rheological properties on fiber-enriched cornÂextrudates. Journal of Cereal Science, 2009, 50, 227-234.	1.8	68
18	A study of the rheological properties of concentrated food emulsions. Journal of Food Engineering, 1995, 25, 427-440.	2.7	67

#	Article	IF	CITATIONS
19	A molecular dynamics simulation study on the conformational stability of amylose-linoleic acid complex in water. Carbohydrate Polymers, 2018, 196, 56-65.	5.1	67
20	Whey protein gelation induced by enzymatic hydrolysis and heat treatment: Comparison of creep and recovery behavior. Food Hydrocolloids, 2017, 63, 696-704.	5.6	65
21	Rheological and structural characterization of whey protein gelation induced by enzymatic hydrolysis. Food Hydrocolloids, 2016, 61, 211-220.	5.6	63
22	Characterization of structure of gluten-free breads by using X-ray microtomography. Food Hydrocolloids, 2014, 36, 37-44.	5.6	60
23	Functionality of the storage proteins in gluten-free cereals and pseudocereals in dough systems. Journal of Cereal Science, 2016, 67, 22-34.	1.8	60
24	Free Fatty Acids Electronically Bridge the Self-Assembly of a Three-Component Nanocomplex Consisting of Amylose, Protein, and Free Fatty Acids. Journal of Agricultural and Food Chemistry, 2010, 58, 9164-9170.	2.4	59
25	Molecular Dynamics Simulation for Mechanism Elucidation of Food Processing and Safety: State of the Art. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 243-263.	5.9	58
26	Rheology, microstructure and phase behavior of potato starch-protein fibril mixed gel. Carbohydrate Polymers, 2020, 239, 116247.	5.1	57
27	Functionalizing maize zein in viscoelastic dough systems through fibrous, β-sheet-rich protein networks: AnÂalternative, physicochemical approach to gluten-free breadmaking. Trends in Food Science and Technology, 2012, 24, 74-81.	7.8	56
28	Advances in conversion of natural biopolymers: A reactive extrusion (REX)–enzyme-combined strategy for starch/protein-based food processing. Trends in Food Science and Technology, 2020, 99, 167-180.	7.8	56
29	The effect of mixing conditions on the material properties of an agar gel—microstructural and macrostructural considerations. Food Hydrocolloids, 2006, 20, 79-87.	5.6	54
30	Acid gelation of soluble laccase-crosslinked corn bran arabinoxylan and possible gel formation mechanism. Food Hydrocolloids, 2019, 92, 1-9.	5.6	52
31	Consequence of Starch Damage on Rheological Properties of Maize Starch Pastes. Cereal Chemistry, 2002, 79, 897-901.	1.1	49
32	Effect of added monovalent or divalent cations on the rheology of sodium caseinate solutions. International Dairy Journal, 2002, 12, 487-492.	1.5	49
33	Small and Large Deformation Rheology for Hard Wheat Flour Dough as Influenced by Mixing and Resting. Journal of Food Science, 2008, 73, E1-8.	1.5	48
34	Stability of curcumin encapsulated in solid lipid microparticles incorporated in cold-set emulsion filled gels of soy protein isolate and xanthan gum. Food Research International, 2017, 102, 759-767.	2.9	47
35	Hybrid mixture theory based moisture transport and stress development in corn kernels during drying: Validation and simulation results. Journal of Food Engineering, 2011, 106, 275-282.	2.7	46
36	Alkaline extraction conditions determine gelling properties of corn bran arabinoxylans. Food Hydrocolloids, 2013, 31, 121-126.	5.6	46

#	Article	IF	CITATIONS
37	High moisture twin-screw extrusion of sago starch: 1. Influence on granule morphology and structure. Carbohydrate Polymers, 1996, 30, 275-286.	5.1	44
38	Application of molecular dynamics simulation in food carbohydrate research—a review. Innovative Food Science and Emerging Technologies, 2015, 31, 1-13.	2.7	44
39	Influence of maize starch granule-associated protein on the rheological properties of starch pastes. Part II. Dynamic measurements of viscoelastic properties of starch pastes. Carbohydrate Polymers, 2002, 49, 323-330.	5.1	43
40	Estimating Microbial Inactivation Parameters from Survival Curves Obtained Under Varying Conditions—The Linear Case. Bulletin of Mathematical Biology, 2003, 65, 219-234.	0.9	42
41	Determination of the Yield Stress of Semi-Liquid Foods from Squeezing Flow Data. Journal of Food Science, 1987, 52, 214-215.	1.5	41
42	Improvement of Sorghum-Wheat Composite Dough Rheological Properties and Breadmaking Quality Through Zein Addition. Cereal Chemistry, 2001, 78, 31-35.	1.1	41
43	Modeling the inactivation of Bacillus subtilis spores during cold plasma sterilization. Innovative Food Science and Emerging Technologies, 2019, 52, 334-342.	2.7	41
44	Viscous flow on the outside of a horizontal rotating cylinder: The roll coating regime with a single fluid. Chemical Engineering Science, 1984, 39, 1443-1449.	1.9	40
45	Using an In-Line Slit-Die Viscometer to Study the Effects of Extrusion Parameters on Corn Melt Rheology. Cereal Chemistry, 2004, 81, 70-76.	1.1	40
46	Increasing and Stabilizing \hat{l}^2 -Sheet Structure of Maize Zein Causes Improvement in Its Rheological Properties. Journal of Agricultural and Food Chemistry, 2012, 60, 2316-2321.	2.4	40
47	Influence of maize starch granule-associated protein on the rheological properties of starch pastes. Part I. Large deformation measurements of paste properties. Carbohydrate Polymers, 2002, 49, 315-321.	5.1	39
48	Assessment of Thermal Transitions by Dynamic Mechanical Analysis (DMA) Using a Novel Disposable Powder Holder. Pharmaceutics, 2010, 2, 78-90.	2.0	39
49	Gliadin and zein show similar and improved rheological behavior when mixed with high molecular weight glutenin. Journal of Cereal Science, 2012, 55, 265-271.	1.8	39
50	Modulating state transition and mechanical properties of viscoelastic resins from maize zein through interactions with plasticizers and co-proteins. Journal of Cereal Science, 2014, 60, 576-583.	1.8	39
51	Neutral hydrocolloids promote shear-induced elasticity and gel strength of gelatinized waxy potato starch. Food Hydrocolloids, 2020, 107, 105923.	5.6	38
52	Chemical and rheological properties of bacterial succinoglycan with distinct structural characteristics. Carbohydrate Polymers, 2009, 76, 320-324.	5.1	37
53	Mechanically modified xanthan gum: Rheology and polydispersity aspects. Carbohydrate Polymers, 2015, 134, 475-484.	5.1	37
54	Functional modifications by physical treatments of dietary fibers used in food formulations. Current Opinion in Food Science, 2017, 15, 70-78.	4.1	37

#	Article	IF	CITATIONS
55	Combining ozone and ultrasound technologies to modify maize starch. International Journal of Biological Macromolecules, 2019, 139, 63-74.	3.6	37
56	Shear-induced molecular fragmentation decreases the bioaccessibility of fully gelatinized starch and its gelling capacity. Carbohydrate Polymers, 2019, 215, 198-206.	5.1	37
57	Analysis of the Transient Flow of Mayonnaise in a Coaxial Viscometer. Journal of Rheology, 1987, 31, 439-452.	1.3	35
58	Effect of viscoelastic relaxation on moisture transport in foods. Part II: Sorption and drying of soybeans. Journal of Mathematical Biology, 2004, 49, 20-34.	0.8	35
59	Electrostatic Stabilization of $\hat{1}^2$ -lactoglobulin Fibrils at Increased pH with Cationic Polymers. Biomacromolecules, 2014, 15, 3119-3127.	2.6	35
60	Complexation process of amylose under different concentrations of linoleic acid using molecular dynamics simulation. Carbohydrate Polymers, 2019, 216, 157-166.	5.1	35
61	A multi-scale stochastic drug release model for polymer-coated targeted drug delivery systems. Journal of Controlled Release, 2006, 110, 314-322.	4.8	34
62	Grain of high digestible, high lysine (HDHL) sorghum contains kafirins which enhance the protein network of composite dough and bread. Journal of Cereal Science, 2012, 56, 352-357.	1.8	34
63	Effect of the nixtamalization with calcium carbonate on the indigestible carbohydrate content and starch digestibility of corn tortilla. Journal of Cereal Science, 2014, 60, 421-425.	1.8	33
64	Polyphenols Weaken Pea Protein Gel by Formation of Large Aggregates with Diminished Noncovalent Interactions. Biomacromolecules, 2021, 22, 1001-1014.	2.6	33
65	Rheological properties of a soluble self-assembled complex from starch, protein and free fatty acids. Journal of Food Engineering, 2011, 105, 444-452.	2.7	32
66	Rheological investigation of alginate chain interactions induced by concentrating calcium cations. Food Hydrocolloids, 2013, 30, 26-32.	5.6	32
67	Limited enzymatic hydrolysis induced pea protein gelation at low protein concentration with less heat requirement. Food Hydrocolloids, 2022, 128, 107547.	5.6	32
68	A mathematical model for the isothermal growth of bubbles in wheat dough. Journal of Food Engineering, 2007, 82, 466-477.	2.7	31
69	Structure–function relationships for corn bran arabinoxylans. Journal of Cereal Science, 2010, 52, 368-372.	1.8	31
70	Influence of Drying Method on the Composition, Physicochemical Properties, and Prebiotic Potential of Dietary Fibre Concentrates from Fruit Peels. Journal of Food Quality, 2018, 2018, 1-11.	1.4	31
71	Brownian Dynamics Study of Gel-Forming Colloidal Particles. Journal of Physical Chemistry B, 2010, 114, 13052-13058.	1.2	30
72	Self-Assembled Nanoparticle of Common Food Constituents That Carries a Sparingly Soluble Small Molecule. Journal of Agricultural and Food Chemistry, 2015, 63, 4312-4319.	2.4	30

#	Article	IF	CITATIONS
73	Development and functional characterization of new antioxidant dietary fibers from pomegranate, olive and artichoke by-products. Food Research International, 2017, 101, 155-164.	2.9	30
74	Corn zein undergoes conformational changes to higher Î ² -sheet content during its self-assembly in an increasingly hydrophilic solvent. International Journal of Biological Macromolecules, 2020, 157, 232-239.	3.6	30
75	A model describing the two-dimensional calendering of finite width sheets. Chemical Engineering Science, 2002, 57, 643-650.	1.9	29
76	Rheological and Thermal Behavior of Gelled Hydrocarbon Fuels. Journal of Propulsion and Power, 2011, 27, 151-161.	1.3	29
77	Functional and compositional changes of orange peel fiber thermally-treated in a twin extruder. LWT - Food Science and Technology, 2019, 111, 673-681.	2.5	29
78	Microwave pasteurization of apple juice: Modeling the inactivation of Escherichia coli O157:H7 and Salmonella Typhimurium at 80–90°C. Food Microbiology, 2020, 87, 103382.	2.1	29
79	Rheological Characterization of Monomethylhydrazine Gels. Journal of Propulsion and Power, 2013, 29, 313-320.	1.3	28
80	Prediction of swelling behavior of crosslinked maize starch suspensions. Carbohydrate Polymers, 2018, 199, 331-340.	5.1	28
81	Modeling the inactivation of Escherichia coli O157:H7 and Salmonella Typhimurium in juices by pulsed electric fields: The role of the energy density. Journal of Food Engineering, 2020, 282, 110001.	2.7	28
82	Characterisation of frozen orange juice by ultrasound and wavelet analysis. Journal of the Science of Food and Agriculture, 2004, 84, 405-410.	1.7	27
83	A poroelastic model for wave propagation in partially frozen orange juice. Journal of Food Engineering, 2007, 80, 11-17.	2.7	27
84	Modeling of moisture diffusivities for components of yellow-dent corn kernels. Journal of Cereal Science, 2009, 50, 82-90.	1.8	27
85	Description of normal, log—normal and Rosin—Rammler particle populations by a modified version of the beta distribution function. Powder Technology, 1988, 54, 119-125.	2.1	26
86	Impact of urea on the three-dimensional structure, viscoelastic and thermal behavior of iota-carrageenan. Carbohydrate Polymers, 2013, 92, 1873-1879.	5.1	26
87	The Mechanical Sensitivity of Soft Compressible Testing Machines. Journal of Rheology, 1989, 33, 455-467.	1.3	25
88	DETERMINATION OF ULTRASONIC-BASED RHEOLOGICAL PROPERTIES OF DOUGH DURING FERMENTATION. Journal of Texture Studies, 2004, 35, 33-52.	1.1	25
89	Rheological properties of pasta dough during pasta extrusion: Effect of moisture and dough formulation. Journal of Cereal Science, 2014, 60, 346-351.	1.8	25
90	A numerical algorithm for calculating microbial survival curves during thermal processing. Food Research International, 2007, 40, 203-208.	2.9	24

#	Article	IF	CITATIONS
91	Protein adsorption induced bridging flocculation: the dominant entropic pathway for nano-bio complexation. Nanoscale, 2016, 8, 3326-3336.	2.8	24
92	Effect of zein extrusion and starch type on the rheological behavior of gluten-free dough. Journal of Cereal Science, 2020, 91, 102866.	1.8	24
93	Influence of extrusion variables on subsequent saccharification behaviour of sago starch. Food Chemistry, 1995, 54, 289-296.	4.2	23
94	Biological macromolecule delivery system for improving functional performance of hydrophobic nutraceuticals. Current Opinion in Food Science, 2016, 9, 56-61.	4.1	23
95	Shear-thickening behavior of gelatinized waxy starch dispersions promoted by the starch molecular characteristics. International Journal of Biological Macromolecules, 2019, 121, 120-126.	3.6	23
96	Stored Gelatinized Waxy Potato Starch Forms a Strong Retrograded Gel at Low pH with the Formation of Intermolecular Double Helices. Journal of Agricultural and Food Chemistry, 2020, 68, 4036-4041.	2.4	23
97	Thermal treatment of dry zein to improve rheological properties in gluten-free dough. Food Hydrocolloids, 2021, 115, 106629.	5.6	23
98	The single screw extruder as a bioreactor for sago starch hydrolysis. Food Chemistry, 1997, 60, 1-11.	4.2	22
99	Heat and pH Stability of Alkaliâ€Extractable Corn Arabinoxylan and Its Xylanaseâ€Hydrolyzate and Their Viscosity Behavior. Journal of Food Science, 2012, 77, H23-30.	1.5	22
100	A mechanistic model for swelling kinetics of waxy maize starch suspension. Journal of Food Engineering, 2018, 222, 237-249.	2.7	22
101	Structural Characterization and Digestibility of Curcumin Loaded Octenyl Succinic Nanoparticles. Nanomaterials, 2019, 9, 1073.	1.9	22
102	Starch modification by ozone: Correlating molecular structure and gel properties in different starch sources. Food Hydrocolloids, 2020, 108, 106027.	5.6	22
103	Effective attractive range and viscoelasticity of colloidal gels. Soft Matter, 2013, 9, 709-714.	1.2	21
104	Electrospinning Induced Orientation of Protein Fibrils. Biomacromolecules, 2020, 21, 2772-2785.	2.6	21
105	THE EFFECT OF POROSITY ON GLASS TRANSITION MEASUREMENT. International Journal of Food Properties, 2002, 5, 611-628.	1.3	19
106	Cold-Set Gelation of Commercial Soy Protein Isolate: Effects of the Incorporation of Locust Bean Gum and Solid Lipid Microparticles on the Properties of Gels. Food Biophysics, 2018, 13, 226-239.	1.4	19
107	Bioextrusion of Broken Rice in the Presence of Divalent Metal Salts: Effects on Starch Microstructure and Phenolics Compounds. ACS Sustainable Chemistry and Engineering, 2018, 6, 1162-1171.	3.2	19
108	Bioinspired glycosaminoglycan hydrogels via click chemistry for 3D dynamic cell encapsulation. Journal of Applied Polymer Science, 2019, 136, 47212.	1.3	19

#	Article	IF	CITATIONS
109	Rebuilding the lid region from conformational and dynamic features to engineering applications of lipase in foods: Current status and future prospects. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 2688-2714.	5.9	19
110	Long-term low shear-induced highly viscous waxy potato starch gel formed through intermolecular double helices. Carbohydrate Polymers, 2020, 232, 115815.	5.1	18
111	Heat accelerates degradation of β-lactoglobulin fibrils at neutral pH. Food Hydrocolloids, 2022, 124, 107291.	5.6	18
112	Theoretical comparison of two segregation indices for binary powder mixtures. Powder Technology, 1989, 58, 55-61.	2.1	17
113	Squeezing flow of a highly viscous incompressible liquid pressed between slightly inclined lubricated wide plates. Rheologica Acta, 2001, 40, 289-295.	1.1	17
114	An experimental investigation on the breakup of surfactant-laden non-Newtonian jets. Chemical Engineering Science, 2011, 66, 6367-6374.	1.9	17
115	Organized polysaccharide fibers as stable drug carriers. Carbohydrate Polymers, 2013, 94, 209-215.	5.1	17
116	Effects of high hydrostatic pressure on lipase from Rhizopus chinensis: I. Conformational changes. Innovative Food Science and Emerging Technologies, 2017, 41, 267-276.	2.7	17
117	Rice starch and Co-proteins improve the rheological properties of zein dough. Journal of Cereal Science, 2021, 102, 103334.	1.8	17
118	Modeling creep/recovery behavior of cold-set gels using different approaches. Food Hydrocolloids, 2022, 123, 107183.	5.6	17
119	High-quality instant sorghum porridge flours for the West African market using continuous processor cooking. International Journal of Food Science and Technology, 2011, 46, 2344-2350.	1.3	16
120	A dynamic model of crosslinked corn starch granules swelling during thermal processing. Journal of Food Engineering, 2007, 81, 500-507.	2.7	15
121	On-line correction of process temperature deviations in continuous retorts. Journal of Food Engineering, 2008, 84, 258-269.	2.7	15
122	Molecular modeling tools to characterize the structure and complexation behavior of carbohydrates. Current Opinion in Food Science, 2016, 9, 62-69.	4.1	15
123	Physical properties of spray dryed <i>Stenocereus griseus</i> pitaya juice powder. Journal of Food Process Engineering, 2017, 40, e12470.	1.5	15
124	Effect of Shear History on Rheology of Time-Dependent Colloidal Silica Gels. Gels, 2017, 3, 45.	2.1	15
125	Incorporation of Plasticizers and Co-proteins in Zein Electrospun Fibers. Journal of Agricultural and Food Chemistry, 2020, 68, 14610-14619.	2.4	15
126	Transport characteristics of dehydrogenated ammonia borane and sodium borohydride spent fuels. International Journal of Hydrogen Energy, 2010, 35, 2063-2072.	3.8	14

#	Article	IF	CITATIONS
127	A STUDY TO CHARACTERIZE THE MECHANICAL BEHAVIOR OF SEMISOLID VISCOELASTIC SYSTEMS UNDER COMPRESSION CHEWING – CASE STUDY OF AGAR GEL. Journal of Texture Studies, 2012, 43, 459-467.	1.1	14
128	Plant protein-based fibers: Fabrication, characterization, and potential food applications. Critical Reviews in Food Science and Nutrition, 2023, 63, 4554-4578.	5.4	14
129	Viscous flow on the outside of a horizontal rotating cylinder—II. Dip coating with a non-newtonian fluid. Chemical Engineering Science, 1986, 41, 2707-2713.	1.9	13
130	The study of the mechanical impedance of foods and biomaterials to characterize their linear viscoelastic behavior at high frequencies. Rheologica Acta, 2008, 47, 727-737.	1.1	13
131	Effect of Spray Drying Conditions on the Physicochemical Properties and Enthalpy Relaxation of α-Lactose. International Journal of Food Properties, 2014, 17, 1303-1316.	1.3	13
132	The alkali spreading phenotype in Sorghum bicolor and its relationship to starch gelatinization. Journal of Cereal Science, 2019, 86, 41-47.	1.8	13
133	In Vitro Fecal Fermentation of High Pressure-Treated Fruit Peels Used as Dietary Fiber Sources. Molecules, 2019, 24, 697.	1.7	13
134	Microencapsulation as a tool to producing an extruded functional food. LWT - Food Science and Technology, 2020, 128, 109433.	2.5	13
135	Characterization and Cellular Uptake of Peptides Derived from <i>In Vitro</i> Digestion of Meat Analogues Produced by a Sustainable Extrusion Process. Journal of Agricultural and Food Chemistry, 2022, 70, 8124-8133.	2.4	13
136	A new method to measure viscosity and intrinsic sound velocity of liquids using impedance tube principles at sonic frequencies. Review of Scientific Instruments, 2004, 75, 2613-2619.	0.6	12
137	A novel method to measure the glass and melting transitions of pharmaceutical powders. International Journal of Pharmaceutics, 2010, 396, 23-29.	2.6	12
138	A Relaxation Model Based on the Application of Fractional Calculus for Describing the Viscoelastic Behavior of Potato Tubers. Transactions of the ASABE, 2017, 60, 259-264.	1.1	12
139	Physical aging of processed fragmented biopolymers. Journal of Food Engineering, 2010, 100, 187-193.	2.7	11
140	An optimization algorithm for estimation of microbial survival parameters during thermal processing. International Journal of Food Microbiology, 2012, 154, 52-58.	2.1	11
141	Interactions Between Flavonoidâ€Rich Extracts and Sodium Caseinate Modulate Protein Functionality and Flavonoid Bioaccessibility in Model Food Systems. Journal of Food Science, 2018, 83, 1229-1236.	1.5	11
142	Predicting the performance of direct contact membrane distillation (DCMD): Mathematical determination of appropriate tortuosity based on porosity. Journal of Food Engineering, 2021, 294, 110400.	2.7	11
143	A new method to determine viscosity of liquids using vibration principles. Rheologica Acta, 2003, 42, 534-543.	1.1	10
144	Isothermal calorimetry: methods and applications in food and pharmaceutical fields. Current Opinion in Food Science, 2016, 9, 70-76.	4.1	10

#	Article	IF	CITATIONS
145	Deciphering molecular interaction and digestibility in retrogradation of amylopectin gel networks. Food and Function, 2021, 12, 11460-11468.	2.1	10
146	Extrusion effect on in vitro fecal fermentation of fruit peels used as dietary fiber sources. LWT - Food Science and Technology, 2022, 153, 112569.	2.5	10
147	Structural evolution during gelation of pea and whey proteins envisaged by time-resolved ultra-small-angle x-ray scattering (USAXS). Food Hydrocolloids, 2022, 126, 107449.	5.6	10
148	Lubricated squeezing flow of a Newtonian liquid between elastic and rigid plates. Rheologica Acta, 1987, 26, 396-400.	1.1	9
149	On the mathematical form of psychophysical relationships, with special focus on the perception of mechanical properties of solid objects. Perception & Psychophysics, 1988, 44, 451-455.	2.3	9
150	RHEOLOGICAL CHANGES IN REFRIGERATED DOUGH DURING STORAGE IN RELATION TO PROTEINS. Journal of Food Process Engineering, 2011, 34, 639-656.	1.5	9
151	Estimating microbial survival parameters under high hydrostatic pressure. Food Research International, 2012, 46, 314-320.	2.9	9
152	Influence of Extraction Method on the Rheological Properties of Jackfruit (Artocarpus) Tj ETQq0 0 0 rgBT /Overlo	ck 10 Tf 5 1.4	i0 462 Td (he
153	Swelling kinetics of rice and potato starch suspensions. Journal of Food Process Engineering, 2020, 43, e13353.	1.5	9
154	Effect of edible plant materials on provitamin A stability and bioaccessibility from extruded whole pearl millet (P. typhoides) composite blends. LWT - Food Science and Technology, 2020, 123, 109109.	2.5	9
155	Atomistic Modeling of Peptide Aggregation and β-Sheet Structuring in Corn Zein for Viscoelasticity. Biomacromolecules, 2021, 22, 1856-1866.	2.6	9
156	The effects of whey protein and oleogel interactions on mechanical properties of oleocolloids and hydro-oleocolloids matrices. Food Hydrocolloids, 2022, 124, 107285.	5.6	9
157	A stepwise approach to predict the performance of forward osmosis operation: Effect of temperature and flow direction. Desalination, 2022, 538, 115889.	4.0	9
158	Note: On the Relationship Between the Dynamic Viscosity and the Relaxation Modulus of Viscoelastic Liquids. Journal of Rheology, 1987, 31, 511-513.	1.3	8
159	Impulse viscoelastic characterization of wheat flour dough during fermentation. Journal of Food Engineering, 2013, 118, 266-270.	2.7	8
160	Changes in the structure and gelling properties of maize fiber arabinoxylans after their pilot scale extraction and spray-drying. Journal of Cereal Science, 2016, 70, 275-281.	1.8	8
161	A RESEARCH NOTE UNIAXIAL COMPRESSION OF DOUBLE LAYERS OF SOLID FOODS. Journal of Texture Studies, 1989, 20, 443-455.	1.1	7

¹⁶² Monitoring the rheological properties and solid content of selected food materials contained in cylindrical cans using audio frequency sound waves. Journal of Food Engineering, 2007, 79, 546-552. 2.7 7

#	Article	IF	CITATIONS
163	A new method to determine viscoelastic properties of corn grits during cooking and drying. Journal of Cereal Science, 2007, 46, 32-38.	1.8	7
164	Viscoelastic properties of dibenzylidene sorbitol (DBS) physical gels at high frequencies. Rheologica Acta, 2012, 51, 3-11.	1,1	7
165	Modeling gelled fluid flow with thixotropy and rheological hysteresis effects. Fuel, 2014, 128, 467-475.	3.4	7
166	Effects of high hydrostatic pressure on Rhizopus chinensis lipase: II. Intermediate states during unfolding. Innovative Food Science and Emerging Technologies, 2018, 45, 152-160.	2.7	7
167	Fabrication and characterizations of cyclic amylopectin-based delivery system incorporated with β-carotene. Food Hydrocolloids, 2022, 130, 107680.	5.6	7
168	Pressure, shear, thermal, and interaction effects on quality attributes of pea–dairy protein colloidal dispersions. Food Hydrocolloids, 2022, 131, 107811.	5.6	7
169	Crosslinking Rates of Thermally Preset Alginate Gels. Biotechnology Progress, 1989, 5, 75-77.	1.3	6
170	Squeezing flow of a double layered array of two newtonian liquids. Chemical Engineering Science, 1989, 44, 2979-2986.	1.9	6
171	Lateral growth of a wheat dough disk under various growth conditions. Journal of Cereal Science, 2009, 49, 65-72.	1.8	6
172	Calculation of the total lethality of conductive heat in cylindrical cans sterilization using linear and non linear survival kinetic models. Food Research International, 2011, 44, 1012-1022.	2.9	6
173	Soluble pectin acts as a particle stabilizer of tomato suspensions: The impact on tomato products rheological characterization. LWT - Food Science and Technology, 2021, 139, 110508.	2.5	6
174	Guaraná (<i>Paullinia cupana</i>) byâ€product as a source of bioactive compounds and as a natural antioxidant for food applications. Journal of Food Processing and Preservation, 2021, 45, e15854.	0.9	6
175	An Improved Method to Estimate Temperatures and Lethality During the Cooling Stage of Sterilized Cylindrical Cans. Food and Bioproducts Processing, 2005, 83, 36-42.	1.8	5
176	Mutations in sorghum SBEIIb and SSIIa affect alkali spreading value, starch composition, thermal properties and flour viscosity. Theoretical and Applied Genetics, 2019, 132, 3357-3374.	1.8	5
177	Comparing inline extrusion viscosity for different operating conditions to offline capillary viscosity measurements. Journal of Food Process Engineering, 2020, 43, e13199.	1.5	5
178	Estimation of parameters in the Weibull model from microbial survival data obtained under constant conditions with come-up times. Journal of Food Engineering, 2021, 292, 110364.	2.7	5
179	Non-invasive techniques to study starch structure and starchy products properties. Current Opinion in Food Science, 2021, 38, 196-202.	4.1	5
180	Structure and binding ability of selfâ€assembled <scp>α″actalbumin</scp> protein nanotubular gels. Biotechnology Progress, 2021, 37, e3127.	1.3	5

#	Article	IF	CITATIONS
181	Production and characterisation of gluten-free chestnut sourdough breads. Quality Assurance and Safety of Crops and Foods, 2016, 8, 349-358.	1.8	5
182	Comparison between a modified beta and a modified normal distribution function for the description of populations with a finite size range. Powder Technology, 1988, 54, 157-160.	2.1	4
183	Effect of agitation on the coagulation time of mineral acid casein curd: Application of Smoluchowski's orthokinetic aggregation theory. Chemical Engineering Science, 1993, 48, 4075-4080.	1.9	4
184	Heat Transfer Coefficients for Evaporation from the Inner Surface of a Rotating Cone — II. Food and Bioproducts Processing, 2003, 81, 293-302.	1.8	4
185	Incorporation of Fibers in Foods: A Food Engineering Challenge. Food Engineering Series, 2010, , 69-98.	0.3	4
186	Physicochemical properties of arabinoxlans in refrigerated dough. Food Research International, 2010, 43, 2119-2125.	2.9	4
187	Changes in the rheology of nano-structured suspensions by adsorption of the protein α-lactalbumin on the surface of silica particles. Rheologica Acta, 2015, 54, 735-744.	1.1	4
188	Differences, Correlation of Compositions, Taste and Texture Characteristics of Rice from Heilongjiang China. Rice Research Open Access, 2017, 5, .	0.4	4
189	Physico-chemical properties and structure of rice cultivars grown in Heilongjiang Province of China. Food Science and Human Wellness, 2021, 10, 45-53.	2.2	4
190	Textural, rheological and pasting properties of dough enriched with einkorn, cranberry bean and potato flours, using simplex lattice mixture design. Quality Assurance and Safety of Crops and Foods, 2018, 10, 389-398.	1.8	4
191	Soluble corn arabinoxylan has desirable material properties for high incorporation in expanded cereal extrudates. Food Hydrocolloids, 2022, 133, 107939.	5.6	4
192	Viscous flow on the outside of a horizontal rotating cylinder—III. Selective coating of two immiscible fluids. Chemical Engineering Science, 1986, 41, 2715-2721.	1.9	3
193	A novel geometry for rheological characterization of viscoelastic materials. Rheologica Acta, 1990, 29, 323-331.	1.1	3
194	ON THE tan?-FREQUENCY RELATIONSHIP OF FOODS AND AGRICULTURAL COMMODITIES. Journal of Texture Studies, 1997, 28, 585-592.	1.1	3
195	Preparation and Sealing Processing of Sodium Alginate Based Blending Film. Mathematical Problems in Engineering, 2015, 2015, 1-7.	0.6	3
196	Rheological Properties of Film-Forming Solutions and Mechanical Properties of Edible Composite Films Based on Sodium Alginate, Sodium Carboxymethyl Cellulose and Gelatin. Journal of Biobased Materials and Bioenergy, 2018, 12, 28-33.	0.1	3
197	Estimating equilibrium moisture content from relatively short sorption experiments. LWT - Food Science and Technology, 2020, 132, 109832.	2.5	3

198 Starch-Lipid and Starch-Protein Complexes and Their Application. , 2018, , 177-226.

#	Article	IF	CITATIONS
199	Effect of isomaltodextrin on dough rheology and bread quality. International Journal of Food Science and Technology, 2022, 57, 1554-1562.	1.3	3
200	Instrumental Techniques for Measurement of Textural and Rheological Properties of Foods. Contemporary Food Engineering, 2011, , 5-53.	0.2	2
201	Contraction of a shear-thinning axisymmetric cavity. Physics of Fluids, 2019, 31, 123103.	1.6	2
202	In situ and real-time insight into Rhizopus chinensis lipase under high pressure and temperature: Conformational traits and biobehavioural analysis. International Journal of Biological Macromolecules, 2020, 154, 1314-1323.	3.6	2
203	The Effects of Calcium Propionate and Cinnamaldehyde on the Mechanical, Physical and Antimicrobial Properties of Composite Films Based on Potato Starch. Journal of Biobased Materials and Bioenergy, 2016, 10, 176-183.	0.1	2
204	Enzymatic Processes of Dietary Fibers. Food Engineering Series, 2020, , 301-327.	0.3	2
205	Microbial safety and shelfâ€life of pulsed electric field processed nutritious juices and their potential for commercial production. Journal of Food Processing and Preservation, 2022, 46, .	0.9	2
206	Mechanical characteristics of raw and processed peat. Powder Technology, 1987, 51, 273-275.	2.1	1
207	Rheology of JP-8â^•SiO[sub 2] and RP-1â^•SiO[sub 2] Gels. , 2010, , .		1
208	Organic Hydrogel Templates for Tunable Mesoporous Silica Hybrid Materials. Materials Research Society Symposia Proceedings, 2015, 1721, 1.	0.1	1
209	Collagen-fibril matrix properties modulate the kinetics of silica polycondensation to template and direct biomineralization. Journal of Materials Research, 2016, 31, 311-320.	1.2	1
210	Isomaltodextrin strengthens model starch gels and moderately promotes starch retrogradation. International Journal of Food Science and Technology, 2021, 56, 1631-1640.	1.3	1
211	Transglutaminase Shows Better Functionality on High Digestible, High Lysine Sorghum-Wheat Composite Dough and Bread, Compared to Normal Sorghum-Wheat Composites. Turkish Journal of Agriculture: Food Science and Technology, 2019, 7, 877.	0.1	1
212	Novel pearl millet couscous process for West African markets using a lowâ€cost singleâ€screw extruder. International Journal of Food Science and Technology, 2022, 57, 4594-4601.	1.3	1
213	Fouling in a Centritherm Evaporator With Whey Solutions. Heat Transfer Engineering, 2009, 30, 859-867.	1.2	0
214	Fluid Properties of Organic-Nanoparticle and Fumed Silica Systems for Gelled Materials. , 2011, , .		0
215	The Incorporation of Carotenoids on Ready to Eat Foods Studied Through Their Stability During Extrusion Processing. Food Engineering Reviews, 2021, 13, 902.	3.1	0
216	Use of Fractal Analysis to Characterize the Structure of Whey Protein Colloidal Gels. , 0, , .		0

#	Article	IF	CITATIONS
217	Functional Properties in Industrial Applications. Food Engineering Series, 2020, , 383-417.	0.3	0
218	Fiber Addition to Cereal Based Foods: Effects on Sensory Properties. Food Engineering Series, 2020, , 419-435.	0.3	0
219	Nonâ€traditional ingredients and processes for the development of grainâ€based foods. International Journal of Food Science and Technology, 2022, 57, 4687-4688.	1.3	0
220	In memoriam—Ricardo J. Simpson. Journal of Food Process Engineering, 2022, 45, .	1.5	0
221	Influence of Hofmeister anions on structural and thermal properties of a starch-protein-lipid nanoparticle. International Journal of Biological Macromolecules, 2022, 210, 768-775.	3.6	0