Lei Miao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3487628/publications.pdf

Version: 2024-02-01

104	3,962	31	58
papers	citations	h-index	g-index
106	106	106	3841 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	High-entropy ceramics: Present status, challenges, and a look forward. Journal of Advanced Ceramics, 2021, 10, 385-441.	8.9	510
2	The emergence of solar thermal utilization: solar-driven steam generation. Journal of Materials Chemistry A, 2017, 5, 7691-7709.	5.2	255
3	Development and Evolution of the System Structure for Highly Efficient Solar Steam Generation from Zero to Three Dimensions. Advanced Functional Materials, 2019, 29, 1903255.	7.8	249
4	A mimetic transpiration system for record high conversion efficiency in solar steam generator under one-sun. Materials Today Energy, 2018, 8, 166-173.	2.5	145
5	A facile process to prepare copper oxide thin films as solar selective absorbers. Applied Surface Science, 2011, 257, 10729-10736.	3.1	107
6	Integrated photothermal aerogels with ultrahigh-performance solar steam generation. Nano Energy, 2020, 74, 104857.	8.2	103
7	Efficient, low-cost solar thermoelectric cogenerators comprising evacuated tubular solar collectors and thermoelectric modules. Applied Energy, 2013, 109, 51-59.	5.1	98
8	Solution-Processed VO2-SiO2 Composite Films with Simultaneously Enhanced Luminous Transmittance, Solar Modulation Ability and Anti-Oxidation property. Scientific Reports, 2014, 4, 7000.	1.6	90
9	Extremely high water-production created by a nanoink-stained PVA evaporator with embossment structure. Nano Energy, 2019, 55, 368-376.	8.2	86
10	Flame-treated and fast-assembled foam system for direct solar steam generation and non-plugging high salinity desalination with self-cleaning effect. Applied Energy, 2019, 241, 652-659.	5.1	85
11	High thermoelectric performance of Nb-doped SrTiO ₃ bulk materials with different doping levels. Journal of Materials Chemistry C, 2015, 3, 11406-11411.	2.7	84
12	A novel glass-fiber-aided cold-press method for fabrication of n-type Ag ₂ Te nanowires thermoelectric film on flexible copy-paper substrate. Journal of Materials Chemistry A, 2017, 5, 24740-24748.	5.2	73
13	Morphology Control of Ag Polyhedron Nanoparticles for Costâ€Effective and Fast Solar Steam Generation. Solar Rrl, 2017, 1, 1600023.	3.1	72
14	A robust starch–polyacrylamide hydrogel with scavenging energy harvesting capacity for efficient solar thermoelectricity–freshwater cogeneration. Energy and Environmental Science, 2022, 15, 3388-3399.	15.6	63
15	One-step hydrothermal synthesis of V _{1â°'x} W _x O ₂ (M/R) nanorods with superior doping efficiency and thermochromic properties. Journal of Materials Chemistry A, 2015, 3, 3726-3738.	5.2	61
16	Extraordinary thermoelectric performance in MgAgSb alloy with ultralow thermal conductivity. Nano Energy, 2019, 59, 311-320.	8.2	59
17	Position-aware deep multi-task learning for drug–drug interaction extraction. Artificial Intelligence in Medicine, 2018, 87, 1-8.	3.8	58
18	Dynamic Ag ⁺ -intercalation with AgSnSe ₂ nano-precipitates in Cl-doped polycrystalline SnSe ₂ toward ultra-high thermoelectric performance. Journal of Materials Chemistry A, 2019, 7, 9761-9772.	5.2	50

#	Article	IF	CITATIONS
19	Energy Matching for Boosting Water Evaporation in Direct Solar Steam Generation. Solar Rrl, 2020, 4, 2000341.	3.1	50
20	W-doped anatase TiO2 transparent conductive oxide films: Theory and experiment. Journal of Applied Physics, 2010, 107 , .	1.1	49
21	A Novel Inkâ€Stained Paper for Solar Heavy Metal Treatment and Desalination. Solar Rrl, 2018, 2, 1800073.	3.1	49
22	Strategies for breaking theoretical evaporation limitation in direct solar steam generation. Solar Energy Materials and Solar Cells, 2021, 220, 110842.	3.0	47
23	Broadening the temperature range for high thermoelectric performance of bulk polycrystalline strontium titanate by controlling the electronic transport properties. Journal of Materials Chemistry C, 2018, 6, 7594-7603.	2.7	46
24	Thermoelectric Flexible Silver Selenide Films: Compositional and Length Optimization. IScience, 2020, 23, 100753.	1.9	42
25	Synergistic Effect of Band and Nanostructure Engineering on the Boosted Thermoelectric Performance of nâ€Type Mg ₃₊ <i>_δ</i> (Sb, Bi) ₂ Zintls. Advanced Energy Materials, 2022, 12, .	10.2	41
26	First-principles calculations and high thermoelectric performance of La–Nb doped SrTiO ₃ ceramics. Journal of Materials Chemistry A, 2019, 7, 236-247.	5.2	40
27	Shape-controlled synthesis and influence of W doping and oxygen nonstoichiometry on the phase transition of VO2. Scientific Reports, 2015, 5, 14087.	1.6	39
28	Synthesis of hollow copper sulfide nanocubes with low emissivity for highly efficient solar steam generation. Solar Energy Materials and Solar Cells, 2020, 210, 110484.	3.0	39
29	Effects of environmental factors on the conversion efficiency of solar thermoelectric co-generators comprising parabola trough collectors and thermoelectric modules without evacuated tubular collector. Energy Conversion and Management, 2014, 86, 944-951.	4.4	36
30	A Facile Surfactant-Assisted Reflux Method for the Synthesis of Single-Crystalline Sb ₂ Te ₃ Nanostructures with Enhanced Thermoelectric Performance. ACS Applied Materials & District Performance Perfor	4.0	36
31	Enhanced power factor in flexible reduced graphene oxide/nanowires hybrid films for thermoelectrics. RSC Advances, 2016, 6, 31580-31587.	1.7	35
32	Highly efficient and long-term stable solar-driven water purification through a rechargeable hydrogel evaporator. Desalination, 2022, 537, 115872.	4.0	33
33	Electronic "Bridge―Construction via Ag Intercalation to Diminish Catalytic Anisotropy for 2D Tin Diselenide Cathode Catalyst in Lithium–Oxygen Batteries. Advanced Energy Materials, 2022, 12, .	10.2	33
34	A facile process to prepare one dimension VO ₂ nanostructures with superior metal–semiconductor transition. CrystEngComm, 2013, 15, 1095-1106.	1.3	32
35	Free-Standing Reduced Graphene Oxide Paper with High Electrical Conductivity. Journal of Electronic Materials, 2016, 45, 1290-1295.	1.0	32
36	Substantial thermoelectric enhancement achieved by manipulating the band structure and dislocations in Ag and La co-doped SnTe. Journal of Advanced Ceramics, 2021, 10, 860-870.	8.9	32

#	Article	IF	CITATIONS
37	Reduced Red Mud as the Solar Absorber for Solar-Driven Water Evaporation and Vapor–Electricity Generation. ACS Applied Materials & Samp; Interfaces, 2021, 13, 30556-30564.	4.0	32
38	Sn vacancy engineering for enhancing the thermoelectric performance of two-dimensional SnS. Journal of Materials Chemistry C, 2019, 7, 3351-3359.	2.7	31
39	Realizing High Thermoelectric Performance at Ambient Temperature by Ternary Alloying in Polycrystalline Si1-x-yGexSny Thin Films with Boron Ion Implantation. Scientific Reports, 2019, 9, 14342.	1.6	30
40	Low-cost and fast synthesis of nanoporous silica cryogels for thermal insulation applications. Science and Technology of Advanced Materials, 2012, 13, 035003.	2.8	29
41	Fluoro-benzoselenadiazole-based low band gap polymers for high efficiency organic solar cells. Polymer Chemistry, 2014, 5, 330-334.	1.9	28
42	The dispersion of Au nanorods decorated on graphene oxide nanosheets for solar steam generation. Sustainable Materials and Technologies, 2019, 19, e00090.	1.7	28
43	Review on Wearable Thermoelectric Generators: From Devices to Applications. Energies, 2022, 15, 3375.	1.6	28
44	Low-temperature-poling awakened high dielectric breakdown strength and outstanding improvement of discharge energy density of (Pb,La)(Zr,Sn,Ti)O3 relaxor thin film. Nano Energy, 2020, 77, 105132.	8.2	27
45	Realizing a High <i>ZT</i> of 1.6 in N-Type Mg ₃ Sb ₂ -Based Zintl Compounds through Mn and Se Codoping. ACS Applied Materials & Samp; Interfaces, 2020, 12, 21799-21807.	4.0	26
46	Bottom-up assembly to Ag nanoparticles embedded Nb-doped TiO2 nanobulks with improved n-type thermoelectric properties. Journal of Materials Chemistry, 2012, 22, 14180.	6.7	24
47	Co3O4 nanoforest/Ni foam as the interface heating sheet for the efficient solar-driven water evaporation under one sun. Sustainable Materials and Technologies, 2019, 20, e00106.	1.7	24
48	Multifunctional Hydrothermal arbonized Sugarcane for Highly Efficient Direct Solar Steam Generation. Solar Rrl, 2021, 5, 2000782.	3.1	23
49	Sol–gel template synthesis and characterization of VO2 nanotube arrays. Journal of Sol-Gel Science and Technology, 2012, 63, 103-107.	1.1	22
50	A hybrid hydrogel with protonated g-C3N4 and graphene oxide as an efficient absorber for solar steam evaporation. Sustainable Materials and Technologies, 2019, 20, e00095.	1.7	22
51	Realizing tremendous electrical transport properties of polycrystalline SnSe2 by Cl-doped and anisotropy. Ceramics International, 2019, 45, 82-89.	2.3	22
52	Boosting High Thermoelectric Performance of Ni-Doped Cu1.9S by Significantly Reducing Thermal Conductivity. ACS Applied Materials & Samp; Interfaces, 2020, 12, 8385-8391.	4.0	22
53	Constructed Ge Quantum Dots and Sn Precipitate SiGeSn Hybrid Film with High Thermoelectric Performance at Low Temperature Region. Advanced Energy Materials, 2022, 12, .	10.2	22
54	Optimized Electronic Bands and Ultralow Lattice Thermal Conductivity in Ag and Y Codoped SnTe. ACS Applied Materials & Samp; Interfaces, 2021, 13, 32876-32885.	4.0	21

#	Article	IF	CITATIONS
55	Realizing high thermoelectric performance in Te nanocomposite through Sb ₂ Te ₃ incorporation. CrystEngComm, 2018, 20, 7729-7738.	1.3	20
56	Synergistically optimizing the thermoelectric properties of polycrystalline Ag ₈ SnSe ₆ by introducing additional Sn. CrystEngComm, 2020, 22, 248-256.	1.3	19
57	Enhancement of Thermoelectric Performance of Layered SnSe ₂ by Synergistic Modulation of Carrier Concentration and Suppression of Lattice Thermal Conductivity. ACS Applied Energy Materials, 2019, 2, 8481-8490.	2.5	18
58	Enhanced Visible Photocatalytic Hydrogen Evolution of KN-Based Semiconducting Ferroelectrics <i>via</i> Band-Gap Engineering and High-Field Poling. ACS Applied Materials & Diterfaces, 2022, 14, 8916-8930.	4.0	18
59	Visible-light photocatalytic hydrogen production in a narrow-bandgap semiconducting La/Ni-modified KNbO ₃ ferroelectric and further enhancement <i>via</i> high-field poling. Journal of Materials Chemistry A, 2022, 10, 7238-7250.	5.2	18
60	Cost effective synthesis of p-type Zn-doped MgAgSb by planetary ball-milling with enhanced thermoelectric properties. RSC Advances, 2018, 8, 35353-35359.	1.7	17
61	Decoration of Bi2Se3 nanosheets with a thin Bi2SeO2 layer for visible-light-driven overall water splitting. International Journal of Hydrogen Energy, 2018, 43, 10950-10958.	3.8	17
62	Bi2O3 decorated TiO2 nanotube confined Pt nanoparticles with enhanced activity for catalytic combustion of ethylene. Journal of Materials Science, 2019, 54, 4637-4646.	1.7	17
63	Polypyrroleâ€Reinforced N,Sâ€Doping Graphene Foam for Efficient Solar Purification of Wastewater. Solar Rrl, 2021, 5, 2100210.	3.1	17
64	The film thickness dependent thermal stability of Al2O3:Ag thin films as high-temperature solar selective absorbers. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	16
65	Depressed haze and enhanced solar modulation capability for VO ₂ -based composite films with distinct size effects. RSC Advances, 2016, 6, 90813-90823.	1.7	16
66	Realizing high thermoelectric performance in p-type Si1-x-yGexSny thin films at ambient temperature by Sn modulation doping. Applied Physics Letters, 2020, 117, .	1.5	16
67	Selfâ€Cleaning Integrative Aerogel for Stable Solarâ€Assisted Desalination. Global Challenges, 2021, 5, 2000063.	1.8	16
68	Wearable Thermoelectric Cooler Based on a Two-Layer Hydrogel/Nickel Foam Heatsink with Two-Axis Flexibility. ACS Applied Materials & Interfaces, 2022, 14, 15317-15323.	4.0	16
69	Simultaneous Realization of Flexibility and Ultrahigh Normalized Power Density in a Heatsink-Free Thermoelectric Generator via Fine Thermal Regulation. ACS Applied Materials & Samp; Interfaces, 2022, 14, 1045-1055.	4.0	15
70	Achieving Ultrahigh Photocurrent Density of Mg/Mn-Modified KNbO ₃ Ferroelectric Semiconductors by Bandgap Engineering and Polarization Maintenance. Chemistry of Materials, 2022, 34, 4274-4285.	3.2	15
71	Power factor enhancement via simultaneous improvement of electrical conductivity and Seebeck coefficient in tellurium nanowires/reduced graphene oxide flexible thermoelectric films. Synthetic Metals, 2015, 210, 342-351.	2.1	14
72	Reinforcement of power factor in N-type multiphase thin film of Si1â^'xâ^'yGexSny by mitigating the opposing behavior of Seebeck coefficient and electrical conductivity. Applied Physics Letters, 2021, 119, .	1.5	14

5

#	Article	IF	Citations
73	Enhanced activity for catalytic combustion of ethylene by the Pt nanoparticles confined in TiO2 nanotube with surface oxygen vacancy. Ceramics International, 2022, 48, 3933-3940.	2.3	14
74	Novel PEPA-functionalized graphene oxide for fire safety enhancement of polypropylene. Science and Technology of Advanced Materials, 2015, 16, 025006.	2.8	13
75	The synergistic action between anhydride grafted carbon fiber and intumescent flame retardant enhances flame retardancy and mechanical properties of polypropylene composites. Science and Technology of Advanced Materials, 2018, 19, 718-731.	2.8	13
76	Bifunctional polypyrrole-based conductive paper towards simultaneous efficient solar-driven water evaporation and electrochemical energy storage. Nanoscale, 2022, 14, 6949-6958.	2.8	13
77	Strategy of Extra Zr Doping on the Enhancement of Thermoelectric Performance for TiZr _{<i>x</i>} NiSn Synthesized by a Modified Solid-State Reaction. ACS Applied Materials & Amp; Interfaces, 2021, 13, 48801-48809.	4.0	12
78	Ultra-low thermal conductivity in B ₂ O ₃ composited SiGe bulk with enhanced thermoelectric performance at medium temperature region. Journal of Materials Chemistry A, 2022, 10, 4120-4130.	5.2	12
79	Enhancing the thermoelectric performance of Ag2Se by non-stoichiometric defects. Applied Physics Letters, 2022, 120, .	1.5	12
80	Improving the Thermoelectric Properties of Polyaniline by Introducing Poly(3,4-ethylenedioxythiophene). Journal of Electronic Materials, 2016, 45, 1813-1820.	1.0	11
81	Enhanced thermoelectric properties of p-type polycrystalline SnSe by regulating the anisotropic crystal growth and Sn vacancy. Chinese Physics B, 2018, 27, 047211.	0.7	11
82	Versatile PVA/CS/CuO aerogel with superior hydrophilic and mechanical properties towards efficient solar steam generation. Nano Select, 2021, 2, 2380-2389.	1.9	11
83	Microwave dielectric properties of Bi(Sc1/3Mo2/3)O4 ceramics for LTCC applications. Journal of Materials Science: Materials in Electronics, 2018, 29, 1817-1822.	1.1	10
84	Carrier and microstructure tuning for improving the thermoelectric properties of Ag8SnSe6 via introducing SnBr2. Journal of Advanced Ceramics, 2022, 11, 1144-1152.	8.9	10
85	Improved Thermoelectric Performance in Flexible Tellurium Nanowires/Reduced Graphene Oxide Sandwich Structure Hybrid Films. Journal of Electronic Materials, 2017, 46, 3049-3056.	1.0	9
86	Characterisation of the temperature-dependent M1 to R phase transition in W-doped VO2 nanorod aggregates by Rietveld refinement and theoretical modelling. Physical Chemistry Chemical Physics, 2020, 22, 7984-7994.	1.3	9
87	Silicon-based low-dimensional materials for thermal conductivity suppression: recent advances and new strategies to high thermoelectric efficiency. Japanese Journal of Applied Physics, 2021, 60, SA0803.	0.8	9
88	Low-Temperature, Solution-Based, Scalable Synthesis of Sb2Te3 Nanoparticles with an Enhanced Power Factor. Journal of Electronic Materials, 2014, 43, 2165-2173.	1.0	8
89	Highly Suppressed Thermal Conductivity in Diamond-like Cu ₂ SnS ₃ by Dense Dislocation. ACS Applied Energy Materials, 2021, 4, 8728-8733.	2.5	8
90	No external load measurement strategy for micro thermoelectric generator based on high-performance Si1â^'xâ^'yGexSny film. Journal of Materiomics, 2021, 7, 665-671.	2.8	7

#	Article	IF	Citations
91	Solvothermal synthesis of wire-like SnxSb2Te3+x with an enhanced thermoelectric performance. Dalton Transactions, 2016, 45, 7483-7491.	1.6	6
92	Influence of trace lithium addition on the structure and properties of K0.5Na0.5NbO3-based single crystals. Journal of Materials Science: Materials in Electronics, 2020, 31, 4857-4866.	1.1	6
93	Synthesis and optical property of zinc aluminate spinel cryogels. Journal of Asian Ceramic Societies, 2016, 4, 185-190.	1.0	5
94	Improved Thermoelectric Performance Achieved by Regulating Heterogeneous Phase in Half-Heusler TiNiSn-Based Materials. Journal of Electronic Materials, 2018, 47, 3248-3253.	1.0	5
95	Improved thermoelectric property of B-doped Si/Ge multilayered quantum dot films prepared by RF magnetron sputtering. Japanese Journal of Applied Physics, 2018, 57, 01AF03.	0.8	5
96	Manipulating the Solubility of SnSe in SnTe by Br Doping for Improving the Thermoelectric Performance. ACS Applied Energy Materials, 2021, 4, 13027-13035.	2.5	5
97	High Thermoelectric Performance Achieved in Sb-Doped GeTe by Manipulating Carrier Concentration and Nanoscale Twin Grains. Materials, 2022, 15, 406.	1.3	5
98	Sintering pressure as a "scalpel―to enhance the thermoelectric performance of MgAgSb. Journal of Materials Chemistry C, 2022, 10, 3360-3367.	2.7	5
99	Broadband Near Ultraviolet Random Lasing in ZnO 3-D Nanowalls. Journal of Nanoscience and Nanotechnology, 2011, 11, 9326-9332.	0.9	4
100	Titania Embedded with Nanostructured Sodium Titanate: Reduced Thermal Conductivity for Thermoelectric Application. Journal of Electronic Materials, 2013, 42, 1680-1687.	1.0	3
101	Thermoelectric enhancement in triple-doped strontium titanate with multi-scale microstructure*. Chinese Physics B, 2021, 30, 097204.	0.7	2
102	Microstructure and Optical Properties of Sm ³⁺ Doped TiO ₂ Thin Films by Oblique Angle Deposition. Integrated Ferroelectrics, 2011, 129, 201-207.	0.3	0
103	Synthesis of Cation-Intercalated Titanate Nanobelts. Journal of Nanoscience and Nanotechnology, 2011, 11, 9267-9273.	0.9	0
104	Photoluminescence and cathodoluminescence properties of Li ⁺ doped Gd _{1.88} Eu _{0.12} O ₃ . Journal of the Ceramic Society of Japan, 2015, 123, 989-994.	0.5	0