
Stanislav G Sazonkin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3487204/publications.pdf Version: 2024-02-01

STANISLAV C. SAZONKIN

#	Article	IF	CITATIONS
1	Non-Invasive Acoustic Monitoring of Gas Turbine Units by Fiber Optic Sensors. Sensors, 2022, 22, 4781.	3.8	7
2	Mode-locking features in a sub-200-fs erbium-doped all-fiber laser based on high-density well-aligned single-walled carbon nanotubes. , 2021, , .		2
3	Properties of Scalable Chirped-Pulse Optical Comb in Erbium-Doped Ultrafast All-Fiber Ring Laser. Fibers, 2021, 9, 36.	4.0	3
4	Study of Intra-Chamber Processes in Solid Rocket Motors by Fiber Optic Sensors. Sensors, 2021, 21, 7836.	3.8	12
5	Multibound Soliton Formation in an Erbium-Doped Ring Laser With a Highly Nonlinear Resonator. IEEE Photonics Technology Letters, 2020, 32, 43-46.	2.5	7
6	Propagation Features of Multibound Solitons in Optical Fiber With Anomalous Dispersion in the Telecom Range. , 2020, , .		1
7	Simulation of ultrashort pulse generation in an all-fiber erbium-doped ring laser with a highly nonlinear cavity. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2020, 87, 175.	0.4	Ο
8	Optical Comb Peculiarities of High-energy Chirped-pulse Erbium-doped All-fiber Ring Laser. , 2020, , .		0
9	High-spatial-resolution Distributed Temperature Sensing System Based on a Mode-locked Fiber Laser. , 2020, , .		4
10	Controllable Generation of Ultrashort Multi-Bound Solitons in a Mode-Locked Erbium-Doped Ring Laser with a Highly-Nonlinear Resonator. , 2019, , .		1
11	Fiber Optic Raman Distributed Temperature Sensor Based on an Ultrashort Pulse Mode-Locked Fiber Laser. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2019, 127, 664-668.	0.6	16
12	Multibound solitons generation with a controllable number of bound states in a passive mode-locked all-fiber erbium-doped ring laser. , 2019, , .		2
13	Low-saturation-energy Ultrafast Saturable Absorption of High-density Well-aligned Single-walled Carbon Nanotubes. , 2019, , .		1
14	Fiber optic Raman distributed temperature sensor based on an ultrashort pulse mode-locked fiber laser. , 2019, , .		1
15	Chirped-pulse erbium-doped all-fiber ultrashort pulse laser for a fiber optic Raman distributed temperature sensor. , 2019, , .		Ο
16	Low-noise Multi-bound Solitons Generation in a Highly-nonlinear All-fiber Resonator. , 2018, , .		0
17	Ultrashort Multi-Bound Solitons Generation in the Passively Mode-Locked All-Fiber Laser at the Telecom Window. , 2018, , .		2
18	Pump-Induced Frequency Jitter Study in Hybridly Mode-locked All-fiber Similariton-like Erbium Fiber Laser. , 2018, , .		0

STANISLAV G SAZONKIN

#	Article	IF	CITATIONS
19	High-energy ultrashort-pulse all-fiber erbium-doped ring laser with improved free-running performance. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 2010.	2.1	10
20	Fibre-optic 100 fs pulse amplification and transmission system in the telecom range. Quantum Electronics, 2018, 48, 589-595.	1.0	1
21	High-density Well-aligned Single-walled Carbon Nanotubes Saturable Absorber: Novel Approach of Robust Mode-locking Launching. , 2018, , .		О
22	All-fiber mode-locked erbium-doped ring laser based on a highly-nonlinear resonator with a low-noise ultrashort pulse generation. , 2018, , .		0
23	Comb Peculiarities of Dispersion-Managed Solitons in a Hybrid Mode-Locked All-Fiber Ring Laser. IEEE Photonics Technology Letters, 2017, 29, 1588-1591.	2.5	9
24	Optical comb characterization of an all-fiber mode-locked erbium-doped ring laser with a highly-nonlinear resonator. , 2017, , .		0
25	Hybrid mode-locked erbium-doped all-fiber ring laser with high-density well-aligned single-walled carbon nanotubes. , 2017, , .		1
26	Ultrafast all-fiber erbium-doped ring laser mode-locked by high-density well-aligned single-walled carbon nanotubes. , 2017, , .		1
27	Sub-30 fs pulse generation from all-fiber MOPA source through dispersion and nonlinearity management of amplifier and compressor. , 2017, , .		0
28	Mode-locking peculiarities in an all-fiber erbium-doped ring ultrashort pulse laser with a highly-nonlinear resonator. , 2017, , .		1
29	Generation of ultrashort pulses with minimum duration of 90 fs in a hybrid mode-locked erbium-doped all-fibre ring laser. Quantum Electronics, 2016, 46, 979-981.	1.0	6
30	Saturation parameters studies of carbon nanotube-based thin-film saturable absorbers for erbium fiber laser mode-locking. , 2016, , .		0
31	Dispersion-managed soliton generation in the hybrid mode-locked erbium-doped all-fiber ring laser. , 2016, , .		1
32	All-fiber hybridly mode-locked similariton ring laser for frequency metrology. , 2016, , .		0
33	Stable Similariton Generation in an All-Fiber Hybrid Mode-Locked Ring Laser for Frequency Metrology. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2016, 63, 1028-1033.	3.0	20
34	Performance peculiarities of carbon-nanotube-based thin-film saturable absorbers for erbium fiber laser mode-locking. Journal of the Optical Society of America B: Optical Physics, 2016, 33, 134.	2.1	27
35	High-energy, sub-100 fs, all-fiber stretched-pulse mode-locked Er-doped ring laser with a highly-nonlinear resonator. Optics Express, 2015, 23, 33295.	3.4	26
36	Ultra-short pulse generation in the hybridly mode-locked erbium-doped all-fiber ring laser with a distributed polarizer. Laser Physics Letters, 2015, 12, 065001.	1.4	34

#	Article	IF	CITATIONS
37	Stable similariton generation in hybrid mode-locked erbium-doped all-fiber ring laser for application in optical frequency standard. , 2015, , .		0
38	Stretched-pulse Kerr Mode-locked Generation in Erbium-doped Ring Laser with Highly Nonlinear All-fiber Resonator. , 2015, , .		1
39	Sub-100 fs similariton generation in the hybrid mode-locked erbium-doped fiber ring laser. , 2014, , .		0
40	Hybrid mode-locked ultrashort-pulse erbium-doped fiber laser. Journal of Physics: Conference Series, 2014, 486, 012004.	0.4	8