
Kashappa Goud H Desai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3487192/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Syringe Filling of High-Concentration mAb Products Using Peristaltic Pump-Based Mechanism: Challenges and Mitigation Strategies. Journal of Pharmaceutical Sciences, 2022, 111, 562-576.	3.3	3
2	Comprehensive Temperature Excursion Management Program for the Commercial Distribution of Biopharmaceutical Drug Products. Journal of Pharmaceutical Sciences, 2020, 109, 2131-2144.	3.3	6
3	Micro-Flow Imaging: Estimation of the Contribution of Key Factors to the Variability of Subvisible Particle Count Measurement by a Nested Statistical Analysis. PDA Journal of Pharmaceutical Science and Technology, 2020, 74, 15-26.	O.5	0
4	Mixing of a mAb Formulation in a New Magnetically Coupled Single-Use Mixing System: Key Learnings of Preliminary Experimental and Computational Evaluation. Journal of Pharmaceutical Sciences, 2019, 108, 3932-3937.	3.3	2
5	Syringe Filling of a High-Concentration mAb Formulation: Experimental, Theoretical, and Computational Evaluation of Filling Process Parameters That Influence the Propensity for Filling Needle Clogging. Journal of Pharmaceutical Sciences, 2019, 108, 1130-1138.	3.3	8
6	Japan-Specific Key Regulatory Aspects for Development of New Biopharmaceutical Drug Products. Journal of Pharmaceutical Sciences, 2018, 107, 1773-1786.	3.3	12
7	Polymeric drug delivery systems for intraoral siteâ€specific chemoprevention of oral cancer. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 1383-1413.	3.4	33
8	Syringe Filling of High-Concentration mAb Formulation: Slow Suck-Back Pump Speed Prevented Filling Needle Clogging. Journal of Pharmaceutical Sciences, 2017, 106, 3651-3653.	3.3	13
9	Self-encapsulating Poly(lactic- <i>co</i> -glycolic acid) (PLGA) Microspheres for Intranasal Vaccine Delivery. Molecular Pharmaceutics, 2017, 14, 3228-3237.	4.6	26
10	Chitosan Nanoparticles Prepared by Ionotropic Gelation: An Overview of Recent Advances. Critical Reviews in Therapeutic Drug Carrier Systems, 2016, 33, 107-158.	2.2	95
11	Feasibility Investigation of Cellulose Polymers for Mucoadhesive Nasal Drug Delivery Applications. Molecular Pharmaceutics, 2015, 12, 2732-2741.	4.6	40
12	Gamma Irradiation of Active Self-Healing PLGA Microspheres for Efficient Aqueous Encapsulation of Vaccine Antigens. Pharmaceutical Research, 2013, 30, 1768-1778.	3.5	11
13	The nature of peptide interactions with acid end-group PLGAs and facile aqueous-based microencapsulation of therapeutic peptides. Journal of Controlled Release, 2013, 172, 662-670.	9.9	53
14	Active self-healing encapsulation of vaccine antigens in PLGA microspheres. Journal of Controlled Release, 2013, 165, 62-74.	9.9	86
15	Evaluation of a mucoadhesive fenretinide patch for local intraoral delivery: a strategy to reintroduce fenretinide for oral cancer chemoprevention. Carcinogenesis, 2012, 33, 1098-1105.	2.8	20
16	Mucoadhesive Fenretinide Patches for Site-Specific Chemoprevention of Oral Cancer: Enhancement of Oral Mucosal Permeation of Fenretinide by Coincorporation of Propylene Glycol and Menthol. Molecular Pharmaceutics, 2012, 9, 937-945.	4.6	31
17	Selfâ€Healing Microencapsulation of Biomacromolecules without Organic Solvents. Angewandte Chemie - International Edition, 2012, 51, 10800-10803.	13.8	79
18	Development and In Vitro-In Vivo Evaluation of Fenretinide-Loaded Oral Mucoadhesive Patches for Site-Specific Chemoprevention of Oral Cancer. Pharmaceutical Research, 2011, 28, 2599-2609.	3.5	45

#	Article	IF	CITATIONS
19	Optimizing therapeutic efficacy of chemopreventive agents: A critical review of delivery strategies in oral cancer chemoprevention clinical trials. Journal of Carcinogenesis, 2011, 10, 23.	2.5	21
20	Formulation and In Vitro-In Vivo Evaluation of Black Raspberry Extract-Loaded PLGA/PLA Injectable Millicylindrical Implants for Sustained Delivery of Chemopreventive Anthocyanins. Pharmaceutical Research, 2010, 27, 628-643.	3.5	28
21	Formulation and Characterization of Injectable Poly(dl-lactide-co-glycolide) Implants Loaded with N-Acetylcysteine, a MMP Inhibitor. Pharmaceutical Research, 2008, 25, 586-597.	3.5	35
22	Effect of formulation parameters on 2-methoxyestradiol release from injectable cylindrical poly(dl-lactide-co-glycolide) implants. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 70, 187-198.	4.3	41
23	Sweet Potato Starch Microparticles as Controlled Drug Release Carriers: Preparation and In Vitro Drug Release. Drying Technology, 2007, 25, 689-693.	3.1	21
24	Properties of Tableted High-Amylose Corn Starch–Pectin Blend Microparticles Intended for Controlled Delivery of Diclofenac Sodium. Journal of Biomaterials Applications, 2007, 21, 217-233.	2.4	22
25	Effect of manufacturing parameters on the characteristics of vitamin C encapsulated tripolyphosphate-chitosan microspheres prepared by spray-drying. Journal of Microencapsulation, 2006, 23, 91-103.	2.8	61
26	Study of Gamma-Irradiation Effects on Chitosan Microparticles. Drug Delivery, 2006, 13, 39-50.	5.7	53
27	Characteristics of vitamin C encapsulated tripolyphosphate-chitosan microspheres as affected by chitosan molecular weight. Journal of Microencapsulation, 2006, 23, 79-90.	2.8	65
28	Drug Release Kinetics of Spray-Dried Chitosan Microspheres. Drying Technology, 2006, 24, 769-776.	3.1	51
29	Preparation, Characterization and Protein Loading of Hexanoyl-Modified Chitosan Nanoparticles. Drug Delivery, 2006, 13, 375-381.	5.7	13
30	Preparation and characteristics of high-amylose corn starch/pectin blend microparticles: A technical note. AAPS PharmSciTech, 2005, 6, E202-E208.	3.3	35
31	Linolenic Acid-Modified Chitosan for Formation of Self-Assembled Nanoparticles. Journal of Agricultural and Food Chemistry, 2005, 53, 437-441.	5.2	162
32	Preparation and characterization of drug-loaded chitosan-tripolyphosphate microspheres by spray drying. Drug Development Research, 2005, 64, 114-128.	2.9	122
33	Characteristics of Rofecoxib-Polyethylene Glycol 4000 Solid Dispersions and Tablets Based on Solid Dispersions. Pharmaceutical Development and Technology, 2005, 10, 467-477.	2.4	38
34	Characteristics of vitamin C immobilized particles and sodium alginate beads containing immobilized particles. Journal of Microencapsulation, 2005, 22, 363-376.	2.8	15
35	Enhancement of Dissolution Rate of Valdecoxib Using Solid Dispersions with Polyethylene Glycol 4000. Drug Development and Industrial Pharmacy, 2005, 31, 1-10.	2.0	45
36	Solubility of Rofecoxib in the Presence of Mannitol, Poly(vinylpyrrolidone) K30, Urea, Polyethylene Glycol 4000, and Polyethylene Glycol 6000 at (298.15, 303.15, and 308.15) K. Journal of Chemical & Engineering Data, 2005, 50, 661-665.	1.9	7

#	Article	IF	CITATIONS
37	Solubility of Valdecoxib in the Presence of Poly(ethylene glycol) 4000, Poly(ethylene glycol) 6000, Poly(ethylene glycol) 8000, and Poly(ethylene glycol) 10〉000 at (298.15, 303.15, and 308.15) K. Journal of Chemical & Engineering Data, 2005, 50, 278-282.	1.9	7
38	Solubility of Valdecoxib in the Presence of Glycerol, Propylene Glycol, and Poly(ethylene glycol) 400 at (298.15, 303.15, and 308.15) K. Journal of Chemical & Engineering Data, 2005, 50, 1736-1739.	1.9	7
39	Solubility of Rofecoxib in the Presence of Aqueous Solutions of Glycerol, Propylene Glycol, Ethanol, Span 20, Tween 80, and Sodium Lauryl Sulfate at (298.15, 303.15, and 308.15) K. Journal of Chemical & Engineering Data, 2005, 50, 2061-2064.	1.9	12
40	Recent Developments in Microencapsulation of Food Ingredients. Drying Technology, 2005, 23, 1361-1394.	3.1	887
41	Encapsulation of vitamin C in tripolyphosphate cross-linked chitosan microspheres by spray drying. Journal of Microencapsulation, 2005, 22, 179-192.	2.8	198
42	Preparation and Characterization of Nanoparticles Containing Trypsin Based on Hydrophobically Modified Chitosan. Journal of Agricultural and Food Chemistry, 2005, 53, 1728-1733.	5.2	84
43	Preparation of cross-linked chitosan microspheres by spray drying: Effect of cross-linking agent on the properties of spray dried microspheres. Journal of Microencapsulation, 2005, 22, 377-395.	2.8	97
44	Enhancement of Dissolution Rate of Valdecoxib Using Solid Dispersions with Polyethylene Glycol 4000. Drug Development and Industrial Pharmacy, 2005, 31, 1-10.	2.0	1
45	Solubility of Valdecoxib in the Presence of Ethanol and Sodium Lauryl Sulfate at (298.15, 303.15, and) Tj ETQq1	L 0.78431	4 rgBT /Over
46	Solubility studies on valdecoxib in the presence of carriers, cosolvents, and surfactants. Drug Development Research, 2004, 62, 41-48.	2.9	39
47	Enhanced skin permeation of rofecoxib using topical microemulsion gel. Drug Development Research, 2004, 63, 33-40.	2.9	34
48	Enhancement of dissolution rate of rofecoxib using solid dispersions with urea. Drug Development Research, 2004, 63, 181-189.	2.9	19
49	Solubility of Rofecoxib in the Presence of Methanol, Ethanol, and Sodium Lauryl Sulfate at (298.15,) Tj ETQq1 1 C	0.784314 r 1.9	gBT /Overloc