J L Bamber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3487141/publications.pdf Version: 2024-02-01

LI RAMBED

#	Article	lF	CITATIONS
1	Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere, 2013, 7, 375-393.	3.9	1,455
2	Recent Antarctic ice mass loss from radarÂinterferometry and regional climateÂmodelling. Nature Geoscience, 2008, 1, 106-110.	12.9	819
3	Partitioning Recent Greenland Mass Loss. Science, 2009, 326, 984-986.	12.6	755
4	BedMachine v3: Complete Bed Topography and Ocean Bathymetry Mapping of Greenland From Multibeam Echo Sounding Combined With Mass Conservation. Geophysical Research Letters, 2017, 44, 11051-11061.	4.0	536
5	Calving fluxes and basal melt rates of Antarctic ice shelves. Nature, 2013, 502, 89-92.	27.8	503
6	Reassessment of the Potential Sea-Level Rise from a Collapse of the West Antarctic Ice Sheet. Science, 2009, 324, 901-903.	12.6	432
7	Higher surface mass balance of the Greenland ice sheet revealed by highâ€resolution climate modeling. Geophysical Research Letters, 2009, 36, .	4.0	430
8	Global sea-level budget 1993–present. Earth System Science Data, 2018, 10, 1551-1590.	9.9	409
9	lce sheet contributions to future sea-level rise from structured expert judgment. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11195-11200.	7.1	383
10	A new ice thickness and bed data set for the Greenland ice sheet: 1. Measurement, data reduction, and errors. Journal of Geophysical Research, 2001, 106, 33773-33780.	3.3	363
11	Reassessment of Net Surface Mass Balance in Antarctica. Journal of Climate, 1999, 12, 933-946.	3.2	360
12	JRA-55 based surface dataset for driving ocean–sea-ice models (JRA55-do). Ocean Modelling, 2018, 130, 79-139.	2.4	357
13	A new bed elevation dataset for Greenland. Cryosphere, 2013, 7, 499-510.	3.9	341
14	Widespread Complex Flow in the Interior of the Antarctic Ice Sheet. Science, 2000, 287, 1248-1250.	12.6	314
15	A new 1 km digital elevation model of the Antarctic derived from combined satellite radar and laser data – Part 1: Data and methods. Cryosphere, 2009, 3, 101-111.	3.9	263
16	Recent large increases in freshwater fluxes from Greenland into the North Atlantic. Geophysical Research Letters, 2012, 39, .	4.0	261
17	An expert judgement assessment of future sea level rise from the ice sheets. Nature Climate Change, 2013, 3, 424-427.	18.8	242
18	Sustained mass loss of the northeast Greenland ice sheet triggered by regional warming. Nature Climate Change, 2014, 4, 292-299.	18.8	225

#	Article	IF	CITATIONS
19	Emerging impact of Greenland meltwater on deepwater formation in the North Atlantic Ocean. Nature Geoscience, 2016, 9, 523-527.	12.9	223
20	Spatial and temporal distribution of mass loss from the Greenland Ice Sheet since AD 1900. Nature, 2015, 528, 396-400.	27.8	210
21	Improved representation of East Antarctic surface mass balance in a regional atmospheric climate model. Journal of Glaciology, 2014, 60, 761-770.	2.2	208
22	A new, high-resolution digital elevation model of Greenland fully validated with airborne laser altimeter data. Journal of Geophysical Research, 2001, 106, 6733-6745.	3.3	181
23	Basal conditions for Pine Island and Thwaites Glaciers, West Antarctica, determined using satellite and airborne data. Journal of Glaciology, 2009, 55, 245-257.	2.2	181
24	Timing and origin of recent regional ice-mass loss in Greenland. Earth and Planetary Science Letters, 2012, 333-334, 293-303.	4.4	179
25	The land ice contribution to sea level during the satellite era. Environmental Research Letters, 2018, 13, 063008.	5.2	177
26	Dynamic thinning of glaciers on the Southern Antarctic Peninsula. Science, 2015, 348, 899-903.	12.6	176
27	Ice sheet altimeter processing scheme. International Journal of Remote Sensing, 1994, 15, 925-938.	2.9	170
28	Ice elevation and areal changes of glaciers from the Northern Patagonia Icefield, Chile. Global and Planetary Change, 2007, 59, 126-137.	3.5	147
29	Arctic circulation regimes. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140160.	3.4	141
30	Glacial Isostatic Adjustment over Antarctica from combined ICESat and GRACE satellite data. Earth and Planetary Science Letters, 2009, 288, 516-523.	4.4	135
31	Keel depths of modern Antarctic icebergs and implications for sea-floor scouring in the geological record. Marine Geology, 2007, 243, 120-131.	2.1	134
32	Decreasing cloud cover drives the recent mass loss on the Greenland Ice Sheet. Science Advances, 2017, 3, e1700584.	10.3	134
33	Limits in detecting acceleration of ice sheet mass loss due to climate variability. Nature Geoscience, 2013, 6, 613-616.	12.9	131
34	A review of remote sensing methods for glacier mass balance determination. Global and Planetary Change, 2007, 59, 138-148.	3.5	129
35	Twenty-First-Century Climate Impacts from a Declining Arctic Sea Ice Cover. Journal of Climate, 2006, 19, 1109-1125.	3.2	127
36	Surface mass balance model intercomparison for the Greenland ice sheet. Cryosphere, 2013, 7, 599-614.	3.9	127

#	Article	IF	CITATIONS
37	Antarctic ice-shelf thickness from satellite radar altimetry. Journal of Glaciology, 2011, 57, 485-498.	2.2	115
38	Land Ice Freshwater Budget of the Arctic and North Atlantic Oceans: 1. Data, Methods, and Results. Journal of Geophysical Research: Oceans, 2018, 123, 1827-1837.	2.6	110
39	Geodetic measurements reveal similarities between post–Last Glacial Maximum and present-day mass loss from the Greenland ice sheet. Science Advances, 2016, 2, e1600931.	10.3	108
40	Balance velocities and measured properties of the Antarctic ice sheet from a new compilation of gridded data for modelling. Annals of Glaciology, 2000, 30, 52-60.	1.4	107
41	An improved elevation dataset for climate and ice-sheet modelling: validation with satellite imagery. Annals of Glaciology, 1997, 25, 439-444.	1.4	95
42	Spatial and temporal Antarctic Ice Sheet mass trends, glacioâ€isostatic adjustment, and surface processes from a joint inversion of satellite altimeter, gravity, and GPS data. Journal of Geophysical Research F: Earth Surface, 2016, 121, 182-200.	2.8	94
43	Observation and analysis of ice flow in the largest Greenland ice stream. Journal of Geophysical Research, 2001, 106, 34021-34034.	3.3	92
44	A surface mass balance model for the Greenland Ice Sheet. Journal of Geophysical Research, 2005, 110, n/a-n/a.	3.3	92
45	Rapid response of modern day ice sheets to external forcing. Earth and Planetary Science Letters, 2007, 257, 1-13.	4.4	86
46	An improved elevation dataset for climate and ice-sheet modelling: validation with satellite imagery. Annals of Glaciology, 1997, 25, 439-444.	1.4	84
47	Aerial Photographs Reveal Late–20th-Century Dynamic Ice Loss in Northwestern Greenland. Science, 2012, 337, 569-573.	12.6	81
48	Influence of ice-sheet geometry and supraglacial lakes on seasonal ice-flow variability. Cryosphere, 2013, 7, 1185-1192.	3.9	80
49	Antarctic ice-mass balance 2003 to 2012: regional reanalysis of GRACE satellite gravimetry measurements with improved estimate of glacial-isostatic adjustment based on GPS uplift rates. Cryosphere, 2013, 7, 1499-1512.	3.9	75
50	The sea level fingerprint of recent ice mass fluxes. Cryosphere, 2010, 4, 621-627.	3.9	72
51	Seaâ€level fingerprint of continental water and ice mass change from GRACE. Geophysical Research Letters, 2010, 37, .	4.0	72
52	Impact of model physics on estimating the surface mass balance of the Greenland ice sheet. Geophysical Research Letters, 2007, 34, .	4.0	68
53	Evidence of a hydrological connection between the ice divide and ice sheet margin in the Aurora Subglacial Basin, East Antarctica. Journal of Geophysical Research, 2012, 117, .	3.3	68
54	Potential climatic transitions with profound impact on Europe. Climatic Change, 2012, 110, 845-878.	3.6	67

#	Article	IF	CITATIONS
55	Greenland freshwater pathways in the subâ€ <scp>A</scp> rctic <scp>S</scp> eas from model experiments with passive tracers. Journal of Geophysical Research: Oceans, 2016, 121, 877-907.	2.6	67
56	Geothermal Heat Flux Reveals the Iceland Hotspot Track Underneath Greenland. Geophysical Research Letters, 2018, 45, 8214-8222.	4.0	67
57	Integrating satellite observations with modelling: basal shear stress of the Filcher-Ronne ice streams, Antarctica. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2006, 364, 1795-1814.	3.4	66
58	The accuracy of digital elevation models of the Antarctic continent. Earth and Planetary Science Letters, 2005, 237, 516-523.	4.4	65
59	Paleofluvial Mega-Canyon Beneath the Central Greenland Ice Sheet. Science, 2013, 341, 997-999.	12.6	63
60	Greenland subglacial lakes detected by radar. Geophysical Research Letters, 2013, 40, 6154-6159.	4.0	62
61	Ice-elevation changes of Glaciar Chico, southern Patagonia, using ASTER DEMs, aerial photographs and GPS data. Journal of Glaciology, 2005, 51, 105-112.	2.2	59
62	Dark ice dynamics of the south-west Greenland Ice Sheet. Cryosphere, 2017, 11, 2491-2506.	3.9	58
63	Anomalous recent growth of part of a large Arctic ice cap: Austfonna, Svalbard. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	57
64	Meltwater pathways from marine terminating glaciers of the Greenland ice sheet. Geophysical Research Letters, 2016, 43, 10,873.	4.0	56
65	Subglacial water at the heads of Antarctic ice-stream tributaries. Journal of Glaciology, 2000, 46, 702-703.	2.2	54
66	An analysis of balance velocities over the Greenland ice sheet and comparison with synthetic aperture radar interferometry. Journal of Glaciology, 2000, 46, 67-74.	2.2	53
67	East Antarctic ice stream tributary underlain by major sedimentary basin. Geology, 2006, 34, 33.	4.4	53
68	Elevation changes measured on Svalbard glaciers and ice caps from airborne laser data. Annals of Glaciology, 2005, 42, 202-208.	1.4	52
69	Geodetic corrections to Amazon River water level gauges using ICESat altimetry. Water Resources Research, 2012, 48, .	4.2	51
70	The gravitationally consistent seaâ€level fingerprint of future terrestrial ice loss. Geophysical Research Letters, 2013, 40, 482-486.	4.0	51
71	Ice Sheets and Sea Level: Thinking Outside the Box. Surveys in Geophysics, 2011, 32, 495-505.	4.6	50
72	Testing hypotheses of the cause of peripheral thinning of the Greenland Ice Sheet: is land-terminating ice thinning at anomalously high rates?. Cryosphere, 2008, 2, 205-218.	3.9	50

#	Article	IF	CITATIONS
73	An assessment of forward and inverse GIA solutions for Antarctica. Journal of Geophysical Research: Solid Earth, 2016, 121, 6947-6965.	3.4	48
74	Self-affine subglacial roughness: consequences for radar scattering and basal water discrimination in northern Greenland. Cryosphere, 2017, 11, 1247-1264.	3.9	48
75	Role of Greenland Freshwater Anomaly in the Recent Freshening of the Subpolar North Atlantic. Journal of Geophysical Research: Oceans, 2019, 124, 3333-3360.	2.6	48
76	A new ice thickness and bed data set for the Greenland ice sheet: 2. Relationship between dynamics and basal topography. Journal of Geophysical Research, 2001, 106, 33781-33788.	3.3	46
77	Thickening of the ice stream catchments feeding the Filchner-Ronne Ice Shelf, Antarctica. Geophysical Research Letters, 2005, 32, .	4.0	45
78	A digital elevation model of the Antarctic ice sheet derived from ERS-1 altimeter data and comparison with terrestrial measurements. Annals of Glaciology, 1994, 20, 48-54.	1.4	44
79	A new 1 km digital elevation model of Antarctica derived from combined radar and laser data – Part 2: Validation and error estimates. Cryosphere, 2009, 3, 113-123.	3.9	43
80	Time-evolving mass loss of the Greenland Ice Sheet from satellite altimetry. Cryosphere, 2014, 8, 1725-1740.	3.9	42
81	A digital elevation model of the Antarctic ice sheet derived from ERS-1 altimeter data and comparison with terrestrial measurements. Annals of Glaciology, 1994, 20, 48-54.	1.4	42
82	Modeling the instantaneous response of glaciers after the collapse of the Larsen B Ice Shelf. Geophysical Research Letters, 2015, 42, 5355-5363.	4.0	41
83	Short-term impacts of enhanced Greenland freshwater fluxes in an eddy-permitting ocean model. Ocean Science, 2010, 6, 749-760.	3.4	39
84	Brief communication Greenland's shrinking ice cover: "fast times" but not that fast. Cryosphere, 2012, 6, 533-537.	3.9	39
85	Cloud microphysics and circulation anomalies control differences in future Greenland melt. Nature Climate Change, 2019, 9, 523-528.	18.8	38
86	Ice/Bed Interface and Englacial Properties of Svalbard Ice Masses Deduced from Airborne Radio Echo-Sounding Data. Journal of Glaciology, 1989, 35, 30-37.	2.2	37
87	Geometric boundary conditions for modelling the velocity field of the Antarctic ice sheet. Annals of Glaciology, 1996, 23, 364-373.	1.4	37
88	Antarctic ice shelf thickness from CryoSatâ€⊋ radar altimetry. Geophysical Research Letters, 2015, 42, 10,721.	4.0	36
89	Centennial response of Greenland's three largest outlet glaciers. Nature Communications, 2020, 11, 5718.	12.8	36
90	Simulation of the time-variable gravity field by means of coupled geophysical models. Earth System Science Data, 2011, 3, 19-35.	9.9	35

#	Article	IF	CITATIONS
91	A constraint upon the basal water distribution and thermal state of the Greenland Ice Sheet from radar bed echoes. Cryosphere, 2018, 12, 2831-2854.	3.9	35
92	Global ocean freshening, ocean mass increase and global mean sea level rise over 2005–2015. Scientific Reports, 2019, 9, 17717.	3.3	35
93	The accuracy of satellite radar altimeter data over the Greenland Ice Sheet determined from airborne laser data. Geophysical Research Letters, 1998, 25, 3177-3180.	4.0	34
94	A new global GPS data set for testing and improving modelled GIA uplift rates. Geophysical Journal International, 2018, 214, 2164-2176.	2.4	33
95	The seaâ€level conundrum: case studies from palaeoâ€archives. Journal of Quaternary Science, 2010, 25, 19-25.	2.1	32
96	Brief communication & amp;quot;Importance of slope-induced error correction in volume change estimates from radar altimetry& amp;quot;. Cryosphere, 2012, 6, 447-451.	3.9	32
97	Joint inversion estimate of regional glacial isostatic adjustment in Antarctica considering a lateral varying Earth structure (ESA STSE Project REGINA). Geophysical Journal International, 2017, 211, 1534-1553.	2.4	31
98	Ice shelf thickness over Larsen C, Antarctica, derived from satellite altimetry. Geophysical Research Letters, 2009, 36, .	4.0	29
99	A comparison of basal reflectivity and ice velocity in East Antarctica. Cryosphere, 2010, 4, 447-452.	3.9	29
100	Tracking water level changes of the Amazon Basin with space-borne remote sensing and integration with large scale hydrodynamic modelling: A review. Physics and Chemistry of the Earth, 2011, 36, 223-231.	2.9	29
101	Accuracy and Performance of CryoSat-2 SARIn Mode Data Over Antarctica. IEEE Geoscience and Remote Sensing Letters, 2015, 12, 1516-1520.	3.1	29
102	Basal conditions beneath enhanced-flow tributaries of Slessor Glacier, East Antarctica. Journal of Glaciology, 2006, 52, 481-490.	2.2	28
103	Exploration of parametric uncertainty in a surface mass balance model applied to the Greenland ice sheet. Journal of Geophysical Research, 2012, 117, .	3.3	28
104	Subglacial geology in Coats Land, East Antarctica, revealed by airborne magnetics and radar sounding. Earth and Planetary Science Letters, 2006, 244, 323-335.	4.4	27
105	Evidence for ice flow prior to trough formation in the martian north polar layered deposits. Icarus, 2008, 195, 90-105.	2.5	27
106	Recurring dynamically induced thinning during 1985 to 2010 on Upernavik IsstrÃ,m, West Greenland. Journal of Geophysical Research F: Earth Surface, 2013, 118, 111-121.	2.8	27
107	How well are we able to close the water budget at the global scale?. Hydrology and Earth System Sciences, 2022, 26, 35-54.	4.9	27
108	Basal topography and ice flow in the Bailey/Slessor region of East Antarctica. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	26

#	Article	IF	CITATIONS
109	Combined GRACE and InSAR estimate of West Antarctic ice mass loss. Journal of Geophysical Research, 2010, 115, .	3.3	26
110	Constraining the mass balance of East Antarctica. Geophysical Research Letters, 2017, 44, 4168-4175.	4.0	26
111	Can We Resolve the Basin cale Sea Level Trend Budget From GRACE Ocean Mass?. Journal of Geophysical Research: Oceans, 2020, 125, e2019JC015535.	2.6	26
112	CryoSat Ice Baseline-D validation and evolutions. Cryosphere, 2020, 14, 1889-1907.	3.9	26
113	The impact of a seasonally ice free Arctic Ocean on the temperature, precipitation and surface mass balance of Svalbard. Cryosphere, 2012, 6, 35-50.	3.9	25
114	A data-driven approach for assessing ice-sheet mass balance in space and time. Annals of Glaciology, 2015, 56, 175-183.	1.4	25
115	Subglacial roughness of the Greenland Ice Sheet: relationship with contemporary ice velocity and geology. Cryosphere, 2019, 13, 3093-3115.	3.9	25
116	Modelling land-ice surface mass balance. , 2004, , 117-168.		24
117	Switch-off of a major enhanced ice flow unit in East Antarctica. Geophysical Research Letters, 2006, 33, .	4.0	24
118	Subglacial topography inferred from ice surface terrain analysis reveals a large unâ€surveyed basin below sea level in East Antarctica. Geophysical Research Letters, 2008, 35, .	4.0	24
119	Multivariate spatioâ€ŧemporal modelling for assessing Antarctica's presentâ€day contribution to seaâ€ŀevel rise. Environmetrics, 2015, 26, 159-177.	1.4	24
120	Spatiotemporal interpolation of elevation changes derived from satellite altimetry for Jakobshavn Isbræ, Greenland. Journal of Geophysical Research, 2012, 117, .	3.3	23
121	Onset of Streaming Flow in the Siple Coast Region, West Antarctica. Antarctic Research Series, 0, , 123-136.	0.2	23
122	Subglacial hydrological connectivity within the Byrd Glacier catchment, East Antarctica. Journal of Glaciology, 2014, 60, 345-352.	2.2	23
123	Re-assessing global water storage trends from GRACE time series. Environmental Research Letters, 2021, 16, 034005.	5.2	22
124	The englacial stratigraphy of Wilkes Land, East Antarctica, as revealed by internal radio-echo sounding layering, and its relationship with balance velocities. Annals of Glaciology, 2003, 36, 189-196.	1.4	21
125	Generating synthetic fjord bathymetry for coastal Greenland. Cryosphere, 2017, 11, 363-380.	3.9	21
126	The impact of cloud cover on the net radiation budget of the Greenland ice sheet. Annals of Glaciology, 2002, 34, 141-149.	1.4	20

#	Article	IF	CITATIONS
127	Seasonal variations in sea level induced by continental water mass: First results from GRACE. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	20
128	Shrinking glaciers under scrutiny. Nature, 2012, 482, 482-483.	27.8	20
129	An ice-sheet-wide framework for englacial attenuation from ice-penetrating radar data. Cryosphere, 2016, 10, 1547-1570.	3.9	20
130	Complex evolving patterns of mass loss from Antarctica's largest glacier. Nature Geoscience, 2020, 13, 127-131.	12.9	20
131	Greenland Mass Trends From Airborne and Satellite Altimetry During 2011–2020. Journal of Geophysical Research F: Earth Surface, 2022, 127, .	2.8	20
132	The delineation of drainage basins on the Greenland ice sheet for mass-balance analyses using a combined modelling and geographical information system approach. Hydrological Processes, 2000, 14, 1931-1941.	2.6	19
133	Derivation and optimization of a new Antarctic sea-ice record. International Journal of Remote Sensing, 2001, 22, 113-139.	2.9	19
134	The Greenland Ice Sheet's surface mass balance in a seasonally sea iceâ€free Arctic. Journal of Geophysical Research F: Earth Surface, 2013, 118, 1533-1544.	2.8	19
135	Improved ice loss estimate of the northwestern Greenland ice sheet. Journal of Geophysical Research: Solid Earth, 2013, 118, 698-708.	3.4	19
136	A commentary on "how to interpret expert judgment assessments of twenty-first century sea-level rise―by Hylke de Vries and Roderik SW van de Wal. Climatic Change, 2016, 137, 321-328.	3.6	19
137	An investigation of the small ice cap instability in the Southern Hemisphere with a coupled atmosphere-sea ice-ocean-terrestrial ice model. Climate Dynamics, 1998, 14, 329-352.	3.8	18
138	Ice flow in the northeast Greenland ice stream. Annals of Glaciology, 2000, 31, 141-146.	1.4	18
139	A new bedrock and surface elevation dataset for modelling the Greenland ice sheet. Annals of Glaciology, 2003, 37, 351-356.	1.4	18
140	The role of ice thickness and bed properties on the dynamics of the enhanced-flow tributaries of Bailey Ice Stream and Slessor Glacier, East Antarctica. Annals of Glaciology, 2004, 39, 366-372.	1.4	18
141	River inundation suggests ice-sheet runoff retention. Journal of Glaciology, 2015, 61, 776-788.	2.2	18
142	Paleofluvial landscape inheritance for Jakobshavn Isbræ catchment, Greenland. Geophysical Research Letters, 2016, 43, 6350-6357.	4.0	18
143	Recent progress in understanding climate thresholds. Progress in Physical Geography, 2018, 42, 24-60.	3.2	18
144	Sea Level Budgets Should Account for Ocean Bottom Deformation. Geophysical Research Letters, 2020, 47, e2019GL086492.	4.0	18

#	Article	IF	CITATIONS
145	The Atmospheric Impact of Uncertainties in Recent Arctic Sea Ice Reconstructions. Journal of Climate, 2005, 18, 3996-4012.	3.2	17
146	Sources of 21st century regional sea-level rise along the coast of northwest Europe. Ocean Science, 2014, 10, 473-483.	3.4	16
147	Resolving the Antarctic contribution to seaâ€level rise: a hierarchical modelling framework. Environmetrics, 2014, 25, 245-264.	1.4	16
148	EOF analysis of three records of sea-ice concentration spanning the last 30 years. Geophysical Research Letters, 2003, 30, n/a-n/a.	4.0	15
149	Using internal layers from the Greenland ice sheet, identified from radio-echo sounding data, with numerical models. Annals of Glaciology, 2003, 37, 325-330.	1.4	15
150	Mass balance reassessment of glaciers draining into the Abbot and Getz Ice Shelves of West Antarctica. Geophysical Research Letters, 2017, 44, 7328-7337.	4.0	15
151	Unsteady flow inferred for Thwaites Glacier, and comparison with Pine Island Glacier, West Antarctica. Journal of Glaciology, 2002, 48, 237-246.	2.2	14
152	Assessment of Cloud Cover Characteristics in Satellite Datasets and Reanalysis Products for Greenland. Journal of Climate, 2008, 21, 1837-1849.	3.2	14
153	On the glaciology of EdgeÃ,ya and BarentsÃ,ya, Svalbard. Polar Research, 1995, 14, 105-122.	1.6	14
154	Accelerating Ice Loss From Peripheral Glaciers in North Greenland. Geophysical Research Letters, 2022, 49, .	4.0	14
155	Elevation change of the southern Greenland ice sheet from 1978 to 1988: Interpretation. Journal of Geophysical Research, 2001, 106, 33743-33754.	3.3	13
156	Modelling land-ice dynamics. , 2004, , 169-226.		13
157	Altimetry, gravimetry, GPS and viscoelastic modeling data for the joint inversion for glacial isostatic adjustment in Antarctica (ESA STSE Project REGINA). Earth System Science Data, 2018, 10, 493-523.	9.9	13
158	The instantaneous impact of calving and thinning on the LarsenÂC Ice Shelf. Cryosphere, 2022, 16, 883-901.	3.9	13
159	Remote-Sensing Studies of KvitÃ,yjÃ,kulen, an Ice Cap on KvitÃ,ya, North-East Svalbard. Journal of Glaciology, 1990, 36, 75-81.	2.2	12
160	Unusual surface morphology from digital elevation models of the Greenland Ice Sheet. Geophysical Research Letters, 1998, 25, 3623-3626.	4.0	12
161	Identifying areas of low-profile ice sheet and outcrop damming in the Antarctic ice sheet by ERS-1 satellite altimetry. Annals of Glaciology, 1998, 27, 1-6.	1.4	12
162	A comparison of balance velocities, measured velocities and thermomechanically modelled velocities for the Greenland ice sheet. Annals of Glaciology, 2000, 30, 211-216.	1.4	12

#	Article	IF	CITATIONS
163	Interpretation of the anomalous growth of Austfonna, Svalbard, a large Arctic ice cap. Annals of Glaciology, 2005, 42, 373-379.	1.4	12
164	Mass variation observing system by high low inter-satellite links (MOBILE) – a new concept for sustained observation of mass transport from space. Journal of Geodetic Science, 2019, 9, 48-58.	1.0	12
165	A digital elevation model of the Antarctic ice sheet derived from ERS-1 altimeter data and comparison with terrestrial measurements. Annals of Glaciology, 1994, 20, 48-54.	1.4	12
166	Greenland Melt and the Atlantic Meridional Overturning Circulation. , 2016, 29, 22-33.		11
167	On the glaciology of Edge�ya and Barentsï;½ya, Svalbard. Polar Research, 1995, 14, 105-122.	1.6	10
168	Determination of cloud top amount and altitude at high latitudes. Geophysical Research Letters, 2001, 28, 1675-1678.	4.0	10
169	The land-ice contribution to 21st-century dynamic sea level rise. Ocean Science, 2014, 10, 485-500.	3.4	10
170	Modelled glacier dynamics over the last quarter of a century at Jakobshavn Isbræ. Cryosphere, 2016, 10, 597-611.	3.9	10
171	Antarctic Grounding Line Mapping From CryoSatâ€2 Radar Altimetry. Geophysical Research Letters, 2017, 44, 11,886.	4.0	10
172	The atmospheric correction for satellite infrared radiometer data in polar regions. Geophysical Research Letters, 1994, 21, 2111-2114.	4.0	9
173	Remote-sensing techniques. , 2004, , 59-114.		9
174	Mass balance of the Antarctic ice sheet: observational aspects. , 2004, , 459-490.		9
175	Simultaneous solution for mass trends on the West Antarctic Ice Sheet. Cryosphere, 2015, 9, 805-819.	3.9	9
176	Surface Expression of Basal and Englacial Features, Properties, and Processes of the Greenland Ice Sheet. Geophysical Research Letters, 2019, 46, 783-793.	4.0	9
177	Mapping the grounding zone of LarsenÂC Ice Shelf, Antarctica, from ICESat-2 laser altimetry. Cryosphere, 2020, 14, 3629-3643.	3.9	9
178	Antarctica: modelling. , 2004, , 491-524.		8
179	Remote Sensing in Glaciology. , 0, , 370-382.		8
180	Geometric boundary conditions for modelling the velocity field of the Antarctic ice sheet. Annals of Glaciology, 1996, 23, 364-373.	1.4	8

#	Article	IF	CITATIONS
181	The climate of antarctica in the UGAMP GCM: Sensitivity to topography. Annals of Glaciology, 1997, 25, 79-84.	1.4	7
182	Identifying areas of low-profile ice sheet and outcrop damming in the Antarctic ice sheet by ERS-1 satellite altimetry. Annals of Glaciology, 1998, 27, 1-6.	1.4	7
183	Accounting for GIA signal in GRACE products. Geophysical Journal International, 2021, 228, 2056-2060.	2.4	7
184	Greenland: recent mass balance observations. , 2004, , 393-436.		6
185	A high-resolution Antarctic grounding zone product from ICESat-2 laser altimetry. Earth System Science Data, 2022, 14, 535-557.	9.9	6
186	The climate of antarctica in the UGAMP GCM: Sensitivity to topography. Annals of Glaciology, 1997, 25, 79-84.	1.4	5
187	Measuring the location and width of the Antarctic grounding zone using CryoSat-2. Cryosphere, 2020, 14, 2071-2086.	3.9	5
188	Mass evolution of the Antarctic Peninsula over the last 2 decades from a joint Bayesian inversion. Cryosphere, 2022, 16, 1349-1367.	3.9	5
189	The use of airborne laser data to calibrate satellite radar altimetry data over ice sheets. Journal of Geodynamics, 2002, 34, 377-390.	1.6	4
190	Conclusions, summary and outlook. , 2004, , 623-640.		4
191	Morphology and Surface Characteristics of the West Antarctic Ice Sheet. Antarctic Research Series, 0, , 13-27.	0.2	4
192	Bayesian model–data synthesis with an application to global glacioâ€ɨsostatic adjustment. Environmetrics, 2019, 30, e2530.	1.4	4
193	The Bristol <scp>CMIP6</scp> Data Hackathon. Weather, 2022, 77, 218-221.	0.7	4
194	Microwave scatterometry in support of space-borne scientific missions. Electronics and Communication Engineering Journal, 1994, 6, 281-288.	0.5	3
195	Derivation of a global land elevation data set from satellite radar altimeter data for topographic mapping. Journal of Geophysical Research, 1998, 103, 32159-32168.	3.3	3
196	Greenland: modelling. , 2004, , 437-458.		3
197	Analysis of satellite-altimeter height measurements above continental ice sheets. Journal of Glaciology, 1995, 41, 205-206.	2.2	2
198	Accuracy assessment and waveform analysis of CryoSat-2 SARIn mode data over Antarctica. International Journal of Remote Sensing, 2019, 40, 8418-8431.	2.9	2

#	Article	IF	CITATIONS
199	Ice Sheets and Sea Level: Thinking Outside the Box. Space Sciences Series of ISSI, 2011, , 495-505.	0.0	2
200	Remote-Sensing Studies of KvitÃ,yjÃ,kulen, an Ice Cap on KvitÃ,ya, North-East Svalbard. Journal of Glaciology, 1990, 36, 75-81.	2.2	2
201	Simultaneous implementation of a synthetic aperture radar and a high resolution optical imager. , 1995, , .		1
202	Analysis of satellite-altimeter height measurements above continental ice sheets. Journal of Glaciology, 1995, 41, 205-206.	2.2	0
203	Cover Global land surface topography derived from the geodetic phase of ERS-1. International Journal of Remote Sensing, 1996, 17, 3089-3092.	2.9	0
204	Modelling Ice Sheet Dynamics with the Aid of Satellite-Derived Topography. , 2005, , 13-33.		0
205	Remote Sensing Of Snow and Ice. Photogrammetric Record, 2007, 22, 180-181.	0.4	0
206	What happens when an ice sheet melts?. Significance, 2009, 6, 122-125.	0.4	0
207	Marshall SJ (2011) The cryosphere. Princeton University Press, Princeton, NJ. 312pp. ISBN 978-0-691-14525-9, hardback, US\$80/£55;ISBN 978-0-691-14526-6, paperback, US\$24.95/£16.95. Journal of Glaciology, 2012, 58, 809-809.	2.2	0
208	Land Ice. , 2016, , 63-77.		0