Farrukh Mukhamedov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/348707/publications.pdf

Version: 2024-02-01

195
papers c

2,116 citations

279487 23 h-index 34 g-index

199 all docs 199 docs citations

199 times ranked 169 citing authors

#	Article	IF	Citations
1	Chaotic behavior of the <i>p</i> -adic Potts–Bethe mapping II. Ergodic Theory and Dynamical Systems, 2022, 42, 3433-3457.	0.4	7
2	Generalized Dobrushin ergodicity coefficient and ergodicities of non-homogeneous Markov chains. Banach Journal of Mathematical Analysis, 2022, 16, 1.	0.4	2
3	Extremality of Disordered Phase of î»-Model on Cayley Trees. Algorithms, 2022, 15, 18.	1.2	6
4	A Few Remarks on Supercyclicity of Non-Archimedean Linear Operators on \$\$c_0(mathbb N)\$\$. P-Adic Numbers, Ultrametric Analysis, and Applications, 2022, 14, 64-76.	0.1	1
5	Entropy Treatment of Evolution Algebras. Entropy, 2022, 24, 595.	1.1	2
6	Phase transition for the Ising model with mixed spins on a Cayley tree. Journal of Statistical Mechanics: Theory and Experiment, 2022, 2022, 053204.	0.9	10
7	Historical behavior for a class of Lotka–Volterra systems. Mathematical Methods in the Applied Sciences, 2022, 45, 11380-11389.	1.2	8
8	A Class of Lotka-Volterra Operators with Historical Behavior. Results in Mathematics, 2022, 77, .	0.4	5
9	Volterra evolution algebras and their graphs. Linear and Multilinear Algebra, 2021, 69, 2228-2244.	0.5	16
10	Infinite dimensional orthogonality preserving nonlinear Markov operators. Linear and Multilinear Algebra, 2021, 69, 526-550.	0.5	6
11	Approximations of non-homogeneous Markov chains on abstract states spaces. Bulletin of Mathematical Sciences, 2021, $11, \ldots$	0.5	0
12	Diagonalizability of Quantum Markov States on Trees. Journal of Statistical Physics, 2021, 182, 1.	0.5	12
13	Weighted strong laws of large numbers on variable exponent vector-valued Lebesgue spaces. Atti Della Accademia Nazionale Dei Lincei, Classe Di Scienze Fisiche, Matematiche E Naturali, Rendiconti Lincei Matematica E Applicazioni, 2021, 31, 791-814.	0.3	O
14	On S-Evolution Algebras and Their Enveloping Algebras. Mathematics, 2021, 9, 1195.	1.1	6
15	Quantum Markov Chains on Comb Graphs: Ising Model. Proceedings of the Steklov Institute of Mathematics, 2021, 313, 178-192.	0.1	7
16	Weighted laws of large numbers and convergence of weighted ergodic averages on vector valued \$\$L_p\$\$-spaces. Advances in Operator Theory, 2021, 6, 1.	0.3	0
17	Characterization of Bistochastic Kadison–Schwarz Operators on \$\$M_2(mathbb C)\$\$. Proceedings of the Steklov Institute of Mathematics, 2021, 313, 165-177.	0.1	O
18	Projective surjectivity of quadratic stochastic operators on <mml:math altimg="si1.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi>L</mml:mi><mml:mn>1</mml:mn></mml:msup></mml:math> and its application. Chaos, Solitons and Fractals, 2021, 148, 111034.	2.5	3

#	Article	IF	Citations
19	Refinement of quantum Markov states on trees. Journal of Statistical Mechanics: Theory and Experiment, 2021, 2021, 083103.	0.9	9
20	SPECTRAL CONDITIONS FOR UNIFORM P-ERGODICITIES OF MARKOV OPERATORS ON ABSTRACT STATES SPACES. Glasgow Mathematical Journal, 2021, 63, 682-696.	0.2	2
21	Supercyclic and Hypercyclic Generalized Weighted Backward Shifts over a Non-Archimedean cO(N) Space. Mathematics, 2021, 9, 2986.	1.1	2
22	A Few Remarks on Asymptotic Stabilities of Markov Operators on $$$ soldsymbol{L}^{mathbf{1}}\$\$-Spaces. Lobachevskii Journal of Mathematics, 2021, 42, 3173-3183.	0.1	1
23	Generalized Dobrushin ergodicity coefficient and uniform ergodicities of Markov operators. Positivity, 2020, 24, 855-890.	0.3	7
24	Factors Generated by XY-Model with Competing Ising Interactions on the Cayley Tree. Annales Henri Poincare, 2020, 21, 241-253.	0.8	11
25	On ground states and phase transition for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e206" altimg="si4.svg"><mml:mi>î»</mml:mi>-model with the competing Potts interactions on Cavlev trees. Physica A: Statistical Mechanics and Its Applications, 2020, 549, 124184.</mml:math 	1.2	6
26	Few Remarks on Quasi Quantum Quadratic Operators on ?2(â,,,). Open Systems and Information Dynamics, 2020, 27, 2050006.	0.5	5
27	A quantum Markov chain approach to phase transitions for quantum Ising model with competing <i>XY</i> -interactions on a Cayley tree. Journal of Mathematical Physics, 2020, 61, .	0.5	15
28	Ergodicities of Infinite Dimensional Nonlinear Stochastic Operators. Qualitative Theory of Dynamical Systems, 2020, 19, 1.	0.8	6
29	Translationâ€invariant generalized P â€adic Gibbs measures for the Ising model on Cayley trees. Mathematical Methods in the Applied Sciences, 2020, 44, 12302.	1.2	6
30	Weakly Periodic Ground States for the î»-Model. Ukrainian Mathematical Journal, 2020, 72, 771-784.	0.1	2
31	Solvability of nonlinear integral equations and surjectivity of nonlinear Markov operators. Mathematical Methods in the Applied Sciences, 2020, 43, 9102-9118.	1.2	2
32	1D Three-state mean-field Potts model with first- and second-order phase transitions. Physica A: Statistical Mechanics and Its Applications, 2020, 555, 124415.	1.2	4
33	Classification of nilpotent evolution algebras and extensions of their derivations. Communications in Algebra, 2020, 48, 4155-4169.	0.3	8
34	Stability Estimates of Markov Semigroups on Abstract States Spaces. Mediterranean Journal of Mathematics, 2020, 17, 1.	0.4	2
35	On omega limiting sets of infinite dimensional Volterra operators. Nonlinearity, 2020, 33, 5875-5904.	0.6	9
36	Types of factors generated by quantum Markov states of Ising model with competing interactions on the Cayley tree. Infinite Dimensional Analysis, Quantum Probability and Related Topics, 2020, 23, 2050019.	0.3	10

#	Article	IF	CITATIONS
37	On Kadison-Schwarz Approximation to Positive Maps. Open Systems and Information Dynamics, 2020, 27, 2050016.	0.5	6
38	On Non-ergodic Volterra Cubic Stochastic Operators. Qualitative Theory of Dynamical Systems, 2019, 18, 1225-1235.	0.8	17
39	Open Quantum Random Walks and Quantum Markov Chains. Functional Analysis and Its Applications, 2019, 53, 137-142.	0.1	11
40	A formulation of Rényi entropy on \$\$C^*\$\$-algebras. Quantum Information Processing, 2019, 18, 1.	1.0	2
41	Open quantum random walks, quantum Markov chains and recurrence. Reviews in Mathematical Physics, 2019, 31, 1950020.	0.7	19
42	Clustering Property of Quantum Markov Chain Associated to XY-model with Competing Ising Interactions on the Cayley Tree of Order Two. Mathematical Physics Analysis and Geometry, 2019, 22, 1.	0.4	17
43	On Nonergodic Uniform Lotka–Volterra Operators. Mathematical Notes, 2019, 105, 258-264.	0.1	19
44	Derivations and automorphisms of nilpotent evolution algebras with maximal nilindex. Journal of Algebra and Its Applications, 2019, 18, 1950233.	0.3	12
45	Dissipative generators, divisible dynamical maps, and the Kadison-Schwarz inequality. Physical Review A, 2019, 100, .	1.0	9
46	On orthogonality preserving cubic stochastic operator defined on 1-dimensional simplex. AIP Conference Proceedings, 2019, , .	0.3	0
47	Quantum Markov states on Cayley trees. Journal of Mathematical Analysis and Applications, 2019, 473, 313-333.	0.5	21
48	Elliptic Quadratic Operator Equations. Acta Applicandae Mathematicae, 2019, 159, 29-74.	0.5	4
49	Uniform ergodicities and perturbation bounds of Markov chains on base norm spaces. Quaestiones Mathematicae, 2018, 41, 863-876.	0.2	5
50	Uniform Ergodicity of Lotz–RÃÞiger Nets of Markov Operators on Abstract State Spaces. Results in Mathematics, 2018, 73, 1.	0.4	4
51	On non-linear Markov operators: surjectivity vs orthogonal preserving property. Linear and Multilinear Algebra, 2018, 66, 2183-2190.	0.5	7
52	Genetic Volterra algebras and their derivations. Communications in Algebra, 2018, 46, 1353-1366.	0.3	13
53	\hat{l} »-model with competing Potts interactions on Cayley tree of order 2. AIP Conference Proceedings, 2018, , .	0.3	0
54	Ground States and Phase Transition of the λ Model on the Cayley Tree. Theoretical and Mathematical Physics (Russian Federation), 2018, 194, 260-273.	0.3	6

#	Article	IF	CITATIONS
55	On a generalized uniform zero-two law for positive contractions of noncommutative L_{1} -spaces and its vector-valued extension. Banach Journal of Mathematical Analysis, 2018, 12, 600-616.	0.4	2
56	On surjective second order non-linear Markov operators and associated nonlinear integral equations. Positivity, 2018, 22, 1445-1459.	0.3	10
57	On S-mixing entropy of quantum channels. Quantum Information Processing, 2018, 17, 1.	1.0	4
58	On stable b-bistochastic quadratic stochastic operators and associated non-homogenous Markov chains. Linear and Multilinear Algebra, 2018, 66, 1-21.	0.5	11
59	Chaotic behavior of the <i>P</i> -adic Potts-Bethe mapping. Discrete and Continuous Dynamical Systems, 2018, 38, 231-245.	0.5	17
60	Dynamics of linear operators on non-Archimedean vector spaces. Bulletin of the Belgian Mathematical Society - Simon Stevin, 2018, 25, .	0.1	1
61	Stability and Monotonicity of Lotka–Volterra Type Operators. Qualitative Theory of Dynamical Systems, 2017, 16, 249-267.	0.8	17
62	On Circle Preserving Quadratic Operators. Bulletin of the Malaysian Mathematical Sciences Society, 2017, 40, 765-782.	0.4	6
63	Uniform ergodicities and perturbation bounds of Markov chains on ordered Banach spaces. Journal of Physics: Conference Series, 2017, 819, 012015.	0.3	3
64	Conditional expectations and martingales in noncommutative Lp -spaces associated with center-valued traces. Acta Mathematica Scientia, 2017, 37, 1019-1032.	0.5	1
65	Orthogonal Preserving Quadratic Stochastic Operators: Infinite Dimensional Case. Journal of Physics: Conference Series, 2017, 819, 012010.	0.3	2
66	On Julia Set and Chaos in p-adic Ising Model on the Cayley Tree. Mathematical Physics Analysis and Geometry, 2017, 20, 1.	0.4	13
67	On Ground States of λ-Model on the Cayley Tree of order two. Journal of Physics: Conference Series, 2017, 819, 012020.	0.3	0
68	Gibbs measures and free energies of Ising–Vannimenus model on the Cayley tree. Journal of Statistical Mechanics: Theory and Experiment, 2017, 2017, 053208.	0.9	11
69	On chaotic behaviour of the p-adic generalized Ising mapping and its application. Journal of Difference Equations and Applications, 2017, , 1-20.	0.7	2
70	Uniqueness of Quantum Markov Chain Associated with XY-Ising Model on Cayley Tree of Order Two. Open Systems and Information Dynamics, 2017, 24, 1750010.	0.5	14
71	Orthogonal-preserving and surjective cubic stochastic operators. Annals of Functional Analysis, 2017, 8, 490-501.	0.3	16
72	On Lyapunov Functions for Infinite Dimensional Volterra Quadratic Stochastic Operators. Journal of Physics: Conference Series, 2017, 949, 012022.	0.3	1

#	Article	IF	Citations
73	Recurrence and Transience within Quantum Markov Chains. Journal of Physics: Conference Series, 2017, 819, 012004.	0.3	O
74	On Translation Invariant Quantum Markov Chains associated with Ising-XY models on a Cayley tree. Journal of Physics: Conference Series, 2017, 819, 012006.	0.3	0
75	A Few Remarks on â€Zero-Two―Law for Positive contractions in the Orlicz-Kantorovich spaces. Journal of Physics: Conference Series, 2017, 819, 012016.	0.3	O
76	Periodic and Weakly Periodic Ground States for the λ-Model on Cayley Tree. Journal of Physics: Conference Series, 2017, 949, 012021.	0.3	0
77	SELF-ADJOINT CYCLICALLY COMPACT OPERATORS AND ITS APPLICATION. Bulletin of the Korean Mathematical Society, 2017, 54, 679-686.	0.3	0
78	On mixing of Markov measures associated with bâ $$ bistochastic QSOs. AIP Conference Proceedings, 2016, , .	0.3	2
79	On Construction of Quantum Markov Chains on Cayley trees. Journal of Physics: Conference Series, 2016, 697, 012018.	0.3	4
80	Spectral decomposition of self-adjoint cyclically compact operators and partial integral equations. Acta Mathematica Hungarica, 2016, 149, 297-305.	0.3	4
81	<i>b</i> à€" Bistochastic Quadratic Stochastic Operators and Their Properties. Journal of Physics: Conference Series, 2016, 697, 012010.	0.3	3
82	On metric properties of unconventional limit sets of contractive non-Archimedean dynamical systems, 2016, 31, 506-524.	0.2	8
83	Phase Transitions for Quantum Markov Chains Associated with Ising Type Models on a Cayley Tree. Journal of Statistical Physics, 2016, 163, 544-567.	0.5	25
84	On an Algebraic Property of the Disordered Phase of the Ising Model with Competing Interactions on a Cayley Tree. Mathematical Physics Analysis and Geometry, 2016, 19, 1.	0.4	22
85	ON A GENERALIZED SELF-SIMILARITY IN THE p-ADIC FIELD. Fractals, 2016, 24, 1650041.	1.8	3
86	On periodic Gibbs measures of p-adic Potts model on a Cayley tree. P-Adic Numbers, Ultrametric Analysis, and Applications, 2016, 8, 225-235.	0.1	14
87	Translation-invariant p-adic quasi-Gibbs measures for the Ising–Vannimenus model on a Cayley tree. Theoretical and Mathematical Physics(Russian Federation), 2016, 187, 583-602.	0.3	3
88	On limit sets of contractive functions on p-adic field. AIP Conference Proceedings, 2016, , .	0.3	0
89	Ergodicity coefficient and ergodic properties of inhomogeneous Markov chains in ordered normed spaces with a base. Mathematical Notes, 2016, 99, 480-483.	0.1	0
90	Phase transition and chaos: P -adic Potts model on a Cayley tree. Chaos, Solitons and Fractals, 2016, 87, 190-196.	2.5	24

#	Article	IF	CITATIONS
91	On a genaralized uniform zero-two law for positive contractions of non-commutative <i>L</i> ₁ -spaces. Journal of Physics: Conference Series, 2016, 697, 012003.	0.3	O
92	Uniform stability and weak ergodicity of nonhomogeneous Markov chains defined on ordered Banach spaces with a base. Positivity, 2016, 20, 135-153.	0.3	13
93	On Volterra and orthogonality preserving quadratic stochastic operators. Miskolc Mathematical Notes, 2016, 17, 457.	0.3	11
94	Orthogonality preserving infinite dimensional quadratic stochastic operators. AIP Conference Proceedings, 2015, , .	0.3	6
95	On orthogonality preserving quadratic stochastic operators. AIP Conference Proceedings, 2015, , .	0.3	3
96	A few remarks on relative ergodic properties of C^* -dynamical systems. AIP Conference Proceedings, 2015, , .	0.3	0
97	The strong "zero-two" law for positive contractions of Banach-Kantorovich \$L_p\$-lattices. Turkish Journal of Mathematics, 2015, 39, 583-594.	0.3	4
98	Phase transition of p-adic Ising $\hat{\textbf{l}}$ »-model. AIP Conference Proceedings, 2015, , .	0.3	0
99	On <i>>p</i> -adic Ising–Vannimenus model on an arbitrary order Cayley tree. Journal of Statistical Mechanics: Theory and Experiment, 2015, 2015, P05032.	0.9	22
100	On Pure Quasi-Quantum Quadratic Operators of ?2(â,,,) II. Open Systems and Information Dynamics, 2015, 22, 1550024.	0.5	4
101	Ergodic properties of nonhomogeneous Markov chains defined on ordered Banach spaces with a base. Acta Mathematica Hungarica, 2015, 147, 294-323.	0.3	13
102	Local Derivations on Subalgebras of Ï,,-Measurable Operators with Respect to Semi-finite von Neumann Algebras. Mediterranean Journal of Mathematics, 2015, 12, 1009-1017.	0.4	1
103	On P-Adic î»-Model on the Cayley Tree II: Phase Transitions. Reports on Mathematical Physics, 2015, 75, 25-46.	0.4	15
104	On b-bistochastic quadratic stochastic operators. Journal of Inequalities and Applications, 2015, 2015,	0.5	16
105	Renormalization Method in p-Adic λ-Model on the Cayley Tree. International Journal of Theoretical Physics, 2015, 54, 3577-3595.	0.5	15
106	On Marginal Processes of Quadratic Stochastic Processes. Bulletin of the Malaysian Mathematical Sciences Society, 2015, 38, 1281-1296.	0.4	4
107	Quantum Quadratic Operators and Processes. Lecture Notes in Mathematics, 2015, , .	0.1	59
108	On non-Archimedean recurrence equations and their applications. Journal of Mathematical Analysis and Applications, 2015, 423, 1203-1218.	0.5	21

#	Article	IF	CITATIONS
109			

#	Article	IF	CITATIONS
127	Solvability of cubic equations in p-ADIC integers (p > 3). Siberian Mathematical Journal, 2013, 54, 501-516.	0.2	16
128	The p-adic Potts model on the Cayley tree of order three. Theoretical and Mathematical Physics (Russian Federation), 2013, 176, 1267-1279.	0.3	9
129	Phase transitions for <i>p</i> -adic Potts model on the Cayley tree of order three. Journal of Statistical Mechanics: Theory and Experiment, 2013, 2013, P07014.	0.9	22
130	The Dobrushin ergodicity coefficient and the ergodicity of noncommutative Markov chains. Journal of Mathematical Analysis and Applications, 2013, 408, 364-373.	0.5	21
131	overflow="scroll"> <mml:msup><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mi>qxmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="scroll"><mml:msub><mml:mrow><mml:mi mathyariant="double-struck">O</mml:mi </mml:mrow></mml:msub></mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow><td>0.2</td><td>27</td></mml:mrow></mml:msup>	0.2	27
132	Journal of Number Theory, 2013, 133, 55-58. On Dynamical Systems and Phase Transitions for q + 1-state p-adic Potts Model on the Cayley Tree. Mathematical Physics Analysis and Geometry, 2013, 16, 49-87.	0.4	47
133	Ising Model with Competing Interactions on Cayley Tree of Order 4: An Analytic Solution. Journal of Physics: Conference Series, 2013, 435, 012032.	0.3	1
134	On Kadison-Schwarz Type Quantum Quadratic Operators on. Abstract and Applied Analysis, 2013, 2013, 1-9.	0.3	4
135	On Pure Quasi-Quantum Quadratic Operators of ?2(â,,,). Open Systems and Information Dynamics, 2013, 20, 1350018.	0.5	10
136	Continuous- and discrete-time Glauber dynamics. First- and second-order phase transitions in mean-field Potts models. Europhysics Letters, 2013, 101, 60008.	0.7	12
137	Weak ergodicity of nonhomogeneous Markov chains on noncommutative \$L^1\$-spaces. Banach Journal of Mathematical Analysis, 2013, 7, 53-73.	0.4	12
138	On Dobrushin Ergodicity Coefficient and weak ergodicity of Markov Chains on Jordan Algebras. Journal of Physics: Conference Series, 2013, 435, 012002.	0.3	2
139	Classification of 3 4(s)-Quadratic Stochastic Operators on 2D simplex. Journal of Physics: Conference Series, 2013, 435, 012003.	0.3	1
140	On bistochastic Kadison-Schwarz operators onM2(â,,,). Journal of Physics: Conference Series, 2013, 435, 012018.	0.3	0
141	Measurable bundles of <i>C</i> *-algebras over ideals. Journal of Physics: Conference Series, 2013, 435, 012004.	0.3	0
142	On a <i>p</i> -adic Cubic Generalized Logistic Dynamical System. Journal of Physics: Conference Series, 2013, 435, 012012.	0.3	0
143	On quadratic stochastic processes and related differential equations. Journal of Physics: Conference Series, 2013, 435, 012013. On <mml:math id="M1" xmlns:mml="http://www.w3.org/1998/Math/Math/ML"><mml:mrow><mml:msup><mml:mi>13/4</mml:mi><mml:mrow><mml:mo stretchy="false">(//mml:mo><mml:mi>s</mml:mi>s<mml:mi>s</mml:mi></mml:mo><mml:mi>s<mml:mi>s<mml:mi>s<mml:mi>s<mml:mi>s<mml:mi>s<mml:mi>s<mml:mi>s<mml:mi>s<mml:mi>s<mml:mi>s<mml:mi>s<mml:mi>s<mml:mi>s<mml:mi>s<mml:mi>s<mml:mi>s<mml:mi>s<mml:mi>s<mml:mi>s<mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml< td=""><td>0.3</td><td>4</td></mml<></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mrow></mml:msup></mml:mrow></mml:math>	0.3	4

stretchy="false">(</mml:mo><mml:mi><</mml:mo) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62 Td (stretchy="false">)(</mml:mo
Stochastic Operators on Two-Dimensional Simplex and Their Behavior. Abstract and Applied Analysis, 2013, 2013, 1-12.

#	Article	IF	Citations
145	On Unification of the Strong Convergence Theorems for a Finite Family of Total Asymptotically Nonexpansive Mappings in Banach Spaces. Journal of Applied Mathematics, 2012, 2012, 1-21.	0.4	2
146	ON DYNAMICS OF $\hat{1}\frac{4}{3}$ QUADRATIC STOCHASTIC OPERATORS. International Journal of Modern Physics Conference Series, 2012, 09, 299-307.	0.7	8
147	A Dynamical System Approach to Phase Transitions for p-Adic Potts Model on the Cayley Tree of Order Two. Reports on Mathematical Physics, 2012, 70, 385-406.	0.4	39
148	ON TENSOR PRODUCTS OF WEAK MIXING VECTOR SEQUENCES AND THEIR APPLICATIONS TO UNIQUELY E-WEAK MIXING C*-DYNAMICAL SYSTEMS. Bulletin of the Australian Mathematical Society, 2012, 85, 46-59.	0.3	5
149	ON DISCRETE LOTKA-VOLTERRA TYPE MODELS. International Journal of Modern Physics Conference Series, 2012, 09, 341-346.	0.7	3
150	Existence of p-adic quasi Gibbs measure for countable state Potts model on the Cayley tree. Journal of Inequalities and Applications, 2012, 2012, .	0.5	11
151	ON QUANTUM MARKOV CHAINS ON CAYLEY TREE I: UNIQUENESS OF THE ASSOCIATED CHAIN WITH XY-MODEL ON THE CAYLEY TREE OF ORDER TWO. Infinite Dimensional Analysis, Quantum Probability and Related Topics, 2011, 14, 443-463.	0.3	28
152	Uniqueness of quantum Markov chains associated with an XY-model on a cayley tree of order 2. Mathematical Notes, 2011, 90, 162-174.	0.1	6
153	On dominant contractions and a generalization of the zero–two law. Positivity, 2011, 15, 497-508.	0.3	6
154	On Quantum Markov Chains on Cayley Tree II: Phase Transitions for the Associated Chain with XY-Model on the Cayley Tree of Order Three. Annales Henri Poincare, 2011, 12, 1109.	0.8	27
155	Phase transitions for XY-model on the Cayley tree of order three in quantum Markov chain scheme. Comptes Rendus Mathematique, 2011, 349, 425-428. On quantum quadratic operators of right: right: right and right and right: right and right and right: right and right	0.1	3
156	xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/ja/dtd" xmlns:tb="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/ja/dtd" xmlns:tb="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.w3.org/1998/Ma	0.5	12
157	xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.co. WEAK CONVERGENCE OF AN IMPLICIT ITERATIVE PROCESS WITH ERRORS FOR AN ASYMPTOTICALLY QUASI I-NONEXPANSIVE MAPPING IN BANACH SPACES. Asian-European Journal of Mathematics, 2011, 04, 309-319.	0.2	1
158	QUADRATIC STOCHASTIC OPERATORS AND PROCESSES: RESULTS AND OPEN PROBLEMS. Infinite Dimensional Analysis, Quantum Probability and Related Topics, 2011, 14, 279-335.	0.3	163
159	ON KADISON-SCHWARZ PROPERTY OF QUANTUM QUADRATIC OPERATORS ON. QP-PQ, Quantum Probability and White Noise Analysis, 2011, , 255-265.	0.1	1
160	On strictly weak mixing C * -dynamical systems and a weighted ergodic theorem. Studia Scientiarum Mathematicarum Hungarica, 2010, 47, 155-174.	0.1	1
161	On p-adic quasi Gibbs measures for q \pm 1-state Potts model on the Cayley tree. P-Adic Numbers, Ultrametric Analysis, and Applications, 2010, 2, 241-251.	0.1	31
162	Strong convergence of an explicit iteration process for a totally asymptotically <mml:math altimg="si1.gif" display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi></mml:mi></mml:math> -nonexpansive mapping in Banach spaces. Applied Mathematics Letters, 2010, 23, 1473-1478.	1.5	10

#	Article	IF	CITATIONS
163	On the Description of Bistochastic Kadison–Schwarz Operators on ?2(â,,,). Open Systems and Information Dynamics, 2010, 17, 245-253.	0.5	8
164	QUANTUM MARKOV FIELDS ON GRAPHS. Infinite Dimensional Analysis, Quantum Probability and Related Topics, 2010, 13, 165-189.	0.3	29
165	Weak and Strong Convergence of an Implicit Iteration Process for an Asymptotically Quasi-I-Nonexpansive Mapping in Banach Space. Fixed Point Theory and Applications, 2010, 2010, 1-14.	1.1	4
166	ERGODIC PROPERTIES OF BOGOLIUBOV AUTOMORPHISMS IN FREE PROBABILITY. Infinite Dimensional Analysis, Quantum Probability and Related Topics, 2010, 13, 393-411.	0.3	7
167	On uniqueness of Gibbs measure for -adic countable state Potts model on the Cayley tree. Nonlinear Analysis: Theory, Methods & Applications, 2009, 71, 5327-5331.	0.6	9
168	A note on noncommutative unique ergodicity and weighted means. Linear Algebra and Its Applications, 2009, 430, 782-790.	0.4	6
169	On the existence of generalized gibbs measures for the one-dimensional p-adic countable state Potts model. Proceedings of the Steklov Institute of Mathematics, 2009, 265, 165-176.	0.1	34
170	Phase diagram of the three states Potts model with next nearest neighbour interactions on the Bethe lattice. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 373, 33-38.	0.9	30
171	On multiparameter weighted ergodic theorem for noncommutative <mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>L</mml:mi><mml:mi>p</mml:mi></mml:msub></mml:math> -spaces. lournal of Mathematical Analysis and Applications, 2008, 343, 226-232.	0.5	4
172	Phase diagram of an Ising model with competitive interactions on a Husimi tree and its disordered counterpart. Physica A: Statistical Mechanics and Its Applications, 2008, 387, 2777-2792.	1.2	19
173	On the chaotic behavior of cubic p-adic dynamical systems. Mathematical Notes, 2008, 83, 428-431.	0.1	4
174	On contour arguments for the three state Potts model with competing interactions on a semi-infinite Cayley tree. Journal of Mathematical Physics, 2007, 48, 013301.	0.5	14
175	Onp-adic Gibbs measures of the countable state Potts model on the Cayley tree. Nonlinearity, 2007, 20, 2923-2937.	0.6	47
176	On the chaotic behavior of a generalized logistic p-adic dynamical system. Journal of Differential Equations, 2007, 243, 125-145.	1.1	8
177	xmins:xocs= http://www.elsevier.com/xmi/xocs/dtd" xmins:xs= http://www.w3.org/2001/XMLSchema xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd"	0.5	19
178	On noncommutative weighted local ergodic theorems on L p -spaces. Periodica Mathematica Hungarica, 2007, 55, 223-235.	0.5	1
179	On strictly weakly mixing C*-dynamical systems. Functional Analysis and Its Applications, 2007, 41, 311-313 On a recursive equation over a <mml:math <="" altimg="si1.gif" display="inline" overflow="scroll" td=""><td>0.1</td><td>3</td></mml:math>	0.1	3
180	xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://w. Applied Mathemati	1.5	11

11

#	Article	IF	CITATIONS
181	A Few Remarks on Mixing Properties of C^* -Dynamical Systems. Rocky Mountain Journal of Mathematics, 2007, 37, .	0.2	6
182	On Chaos of a Cubic p-adic Dynamical System. Progress in Nonlinear Differential Equations and Their Application, 2007, , 305-315.	0.4	0
183	On the ergodic principle for Markov and quadratic stochastic processes and its relations. Linear Algebra and Its Applications, 2006, 416, 730-741.	0.4	21
184	On a class of rational p-adic dynamical systems. Journal of Mathematical Analysis and Applications, 2006, 315, 76-89.	0.5	29
185	On the three state Potts model with competing interactions on the Bethe lattice. Journal of Statistical Mechanics: Theory and Experiment, 2006, 2006, P08012-P08012.	0.9	29
186	On stability properties of positive contractions of L1-spaces associated with finite von Neumann algebras. Colloquium Mathematicum, 2006, 105, 259-269.	0.2	4
187	On infinite dimensional quadratic Volterra operators. Journal of Mathematical Analysis and Applications, 2005, 310, 533-556.	0.5	28
188	On Gibbs Measures of Models with Competing Ternary and Binary Interactions and Corresponding Von Neumann Algebras II. Journal of Statistical Physics, 2005, 119, 427-446.	0.5	32
189	ON INHOMOGENEOUS p-ADIC POTTS MODEL ON A CAYLEY TREE. Infinite Dimensional Analysis, Quantum Probability and Related Topics, 2005, 08, 277-290.	0.3	50
190	On expansion of quantum quadratic stochastic processes into fibrewise Markov processes defined on von Neumann algebras. Izvestiya Mathematics, 2004, 68, 1009-1024.	0.1	16
191	On Gibbs Measures of Models with Competing Ternary and Binary Interactions and Corresponding von Neumann Algebras. Journal of Statistical Physics, 2004, 114, 825-848.	0.5	49
192	On P-adic λ-model on the Cayley tree. Journal of Mathematical Physics, 2004, 45, 4025-4034.	0.5	32
193	On a factor associated with the unordered phase of \hat{l} »-model on a cayley tree. Reports on Mathematical Physics, 2004, 53, 1-18.	0.4	35
194	On individual subsequential ergodic theorem in von Neumann algebras. Studia Mathematica, 2001, 145, 55-62.	0.4	11
195	Quantum Ising model with generalized competing $\langle i \rangle XY \langle i \rangle$ -interactions on a Cayley tree. Infinite Dimensional Analysis, Quantum Probability and Related Topics, $0,$	0.3	0