Marie Hennebelle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3486588/publications.pdf Version: 2024-02-01

MADIE HENNERELLE

#	Article	IF	CITATIONS
1	Lipid Oxidation in Food Emulsions: Analytical Challenges and Recent Developments. , 2022, , 3-29.		2
2	Quantitative assessment of epoxide formation in oil and mayonnaise by 1H-13C HSQC NMR spectroscopy. Food Chemistry, 2022, 390, 133145.	8.2	10
3	Evaluation of PBN spin-trapped radicals as early markers of lipid oxidation in mayonnaise. Food Chemistry, 2021, 334, 127578.	8.2	20
4	Linoleic acid-derived 13-hydroxyoctadecadienoic acid is absorbed and incorporated into rat tissues. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 158870.	2.4	9
5	Quantitative and Predictive Modelling of Lipid Oxidation in Mayonnaise. Antioxidants, 2021, 10, 287.	5.1	9
6	A comprehensive two-dimensional liquid chromatography method for the simultaneous separation of lipid species and their oxidation products. Journal of Chromatography A, 2021, 1644, 462106.	3.7	14
7	Feeding mice a diet high in oxidized linoleic acid metabolites does not alter liver oxylipin concentrations. Prostaglandins Leukotrienes and Essential Fatty Acids, 2021, 172, 102316.	2.2	1
8	Evaluation of oxygen partial pressure, temperature and stripping of antioxidants for accelerated shelf-life testing of oil blends using 1H NMR. Food Research International, 2021, 147, 110555.	6.2	10
9	Effects of Potato Processing and Frying on Oxylipin Concentrations. ACS Food Science & Technology, 2021, 1, 1436-1443.	2.7	4
10	Linoleic acidâ€derived metabolites constitute the majority of oxylipins in the rat pup brain and stimulate axonal growth in primary rat cortical neuronâ€glia coâ€cultures in a sexâ€dependent manner. Journal of Neurochemistry, 2020, 152, 195-207.	3.9	24
11	Effects of industrial heat treatments on bovine milk oxylipins and conventional markers of lipid oxidation. Prostaglandins Leukotrienes and Essential Fatty Acids, 2020, 152, 102040.	2.2	32
12	Brain oxylipin concentrations following hypercapnia/ischemia: effects of brain dissection and dissection time. Journal of Lipid Research, 2019, 60, 671-682.	4.2	24
13	Soluble Epoxide Hydrolase-Derived Linoleic Acid Oxylipins in Serum Are Associated with Periventricular White Matter Hyperintensities and Vascular Cognitive Impairment. Translational Stroke Research, 2019, 10, 522-533.	4.2	34
14	³¹ P NMR assessment of the phosvitinâ€iron complex in mayonnaise. Magnetic Resonance in Chemistry, 2019, 57, 540-547.	1.9	7
15	Metabolic/inflammatory/vascular comorbidity in psychiatric disorders; soluble epoxide hydrolase (sEH) as a possible new target. Neuroscience and Biobehavioral Reviews, 2018, 87, 56-66.	6.1	54
16	Regulation of rat plasma and cerebral cortex oxylipin concentrations with increasing levels of dietary linoleic acid. Prostaglandins Leukotrienes and Essential Fatty Acids, 2018, 138, 71-80.	2.2	46
17	Bioconversion of cheese whey permeate into fungal oil by Mucor circinelloides. Journal of Biological Engineering, 2018, 12, 25.	4.7	33
18	Effects of diets enriched in linoleic acid and its peroxidation products on brain fatty acids, oxylipins, and aldehydes in mice. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 1206-1213.	2.4	27

MARIE HENNEBELLE

#	Article	IF	CITATIONS
19	Oxidized linoleic acid metabolites induce liver mitochondrial dysfunction, apoptosis, and NLRP3 activation in mice. Journal of Lipid Research, 2018, 59, 1597-1609.	4.2	60
20	Impact of thiamine metabolites and spent medium from Chlorella sorokiniana on metabolism in the green algae Auxenochlorella prototheciodes. Algal Research, 2018, 33, 197-208.	4.6	15
21	Altered soluble epoxide hydrolase-derived oxylipins in patients with seasonal major depression: An exploratory study. Psychiatry Research, 2017, 252, 94-101.	3.3	40
22	Butyrate is more ketogenic than leucine or octanoate-monoacylglycerol in healthy adult humans. Journal of Functional Foods, 2017, 32, 170-175.	3.4	12
23	Lipidomic Analysis of Oxidized Fatty Acids in Plant and Algae Oils. Journal of Agricultural and Food Chemistry, 2017, 65, 1941-1951.	5.2	46
24	Plasma Phosphatidylethanolamine and Triacylglycerol Fatty Acid Concentrations are Altered in Major Depressive Disorder Patients with Seasonal Pattern. Lipids, 2017, 52, 559-571.	1.7	14
25	Validation of a One‣tep Method for Extracting Fatty Acids from Salmon, Chicken and Beef Samples. Journal of Food Science, 2017, 82, 2291-2297.	3.1	9
26	Linoleic acid participates in the response to ischemic brain injury through oxidized metabolites that regulate neurotransmission. Scientific Reports, 2017, 7, 4342.	3.3	36
27	Caffeine intake increases plasma ketones: an acute metabolic study in humans. Canadian Journal of Physiology and Pharmacology, 2017, 95, 455-458.	1.4	16
28	Inverse relationship between brain glucose and ketone metabolism in adults during short-term moderate dietary ketosis: A dual tracer quantitative positron emission tomography study. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 2485-2493.	4.3	126
29	Cortical Thinning in Healthy Aging Correlates with Larger Motor-Evoked EEG Desynchronization. Frontiers in Aging Neuroscience, 2016, 8, 63.	3.4	10
30	Can Ketones Help Rescue Brain Fuel Supply in Later Life? Implications for Cognitive Health during Aging and the Treatment of Alzheimer's Disease. Frontiers in Molecular Neuroscience, 2016, 9, 53.	2.9	148
31	Docosahexaenoic acid (DHA) prevents corticosteroneâ€induced changes in astrocyte morphology and function. Journal of Neurochemistry, 2016, 136, 1155-1167.	3.9	19
32	Preliminary evaluation of a differential effect of an α-linolenate-rich supplement on ketogenesis and plasma ω-3 fatty acids in young and older adults. Nutrition, 2016, 32, 1211-1216.	2.4	10
33	Challenges to determining whether DHA can protect against age-related cognitive decline. Clinical Lipidology, 2015, 10, 91-102.	0.4	11
34	Energy restriction does not prevent insulin resistance but does prevent liver steatosis in aging rats on a Western-style diet. Nutrition, 2015, 31, 523-530.	2.4	7
35	Ketogenic response to cotreatment with bezafibrate and medium chain triacylglycerols in healthy humans. Nutrition, 2015, 31, 1255-1259.	2.4	9
36	New insights into docosahexaenoic acid homeostasis during age-;related cognitive decline. Lipid Technology, 2014, 26, 79-81.	0.3	0

MARIE HENNEBELLE

#	Article	IF	CITATIONS
37	Omega-3 polyunsaturated fatty acids and chronic stress-induced modulations of glutamatergic neurotransmission in the hippocampus. Nutrition Reviews, 2014, 72, 99-112.	5.8	32
38	Ageing and apoE change DHA homeostasis: relevance to age-related cognitive decline. Proceedings of the Nutrition Society, 2014, 73, 80-86.	1.0	34
39	Long-term calorie restriction has minimal impact on brain metabolite and fatty acid profiles in aged rats on a Western-style diet. Neurochemistry International, 2013, 63, 450-457.	3.8	10
40	Omegaâ€3 fatty acids deficiency aggravates glutamatergic synapse and astroglial aging in the rat hippocampal <scp>CA</scp> 1. Aging Cell, 2013, 12, 76-84.	6.7	64
41	Influence of Omega-3 Fatty Acid Status on the Way Rats Adapt to Chronic Restraint Stress. PLoS ONE, 2012, 7, e42142.	2.5	65