
Andrew O Finley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3485726/publications.pdf Version: 2024-02-01

 $\Delta \mathsf{ND} \mathsf{D} \mathsf{F} \mathsf{W} \cap \mathsf{F} \mathsf{IN} \mathsf{F} \mathsf{Y}$

#	Article	IF	CITATIONS
1	Highly Scalable Bayesian Geostatistical Modeling via Meshed Gaussian Processes on Partitioned Domains. Journal of the American Statistical Association, 2022, 117, 969-982.	3.1	19
2	Ecological forecasting of tree growth: Regional fusion of treeâ€ring and forest inventory data to quantify drivers and characterize uncertainty. Global Change Biology, 2022, 28, 2442-2460.	9.5	29
3	Simplifying Small Area Estimation With rFIA: A Demonstration of Tools and Techniques. Frontiers in Forests and Global Change, 2022, 5, .	2.3	3
4	spOccupancy: An R package for singleâ€species, multiâ€species, and integrated spatial occupancy models. Methods in Ecology and Evolution, 2022, 13, 1670-1678.	5.2	32
5	Highâ€dimensional multivariate geostatistics: A Bayesian matrixâ€normal approach. Environmetrics, 2021, 32, e2675.	1.4	9
6	Addressing data integration challenges to link ecological processes across scales. Frontiers in Ecology and the Environment, 2021, 19, 30-38.	4.0	74
7	Working across space and time: nonstationarity in ecological research and application. Frontiers in Ecology and the Environment, 2021, 19, 66-72.	4.0	69
8	Integrating automated acoustic vocalization data and point count surveys for estimation of bird abundance. Methods in Ecology and Evolution, 2021, 12, 1040-1049.	5.2	14
9	Trends in bird abundance differ among protected forests but not bird guilds. Ecological Applications, 2021, 31, e02377.	3.8	6
10	Over half of western United States' most abundant tree species in decline. Nature Communications, 2021, 12, 451.	12.8	48
11	Estimating timber volume loss due to storm damage in Carinthia, Austria, using ALS/TLS and spatial regression models. Forest Ecology and Management, 2021, 502, 119714.	3.2	4
12	Bayesian spatially varying coefficient models in the spBayes R package. Environmental Modelling and Software, 2020, 125, 104608.	4.5	18
13	Complementary strengths of spatiallyâ€explicit and multiâ€species distribution models. Ecography, 2020, 43, 456-466.	4.5	11
14	Introduction to Bayesian Methods in Ecology and Natural Resources. , 2020, , .		6
15	Environmental controls on Landsatâ€derived phenoregions across an East African megatransect. Ecosphere, 2020, 11, e03143.	2.2	4
16	Assessing soundscape disturbance through hierarchical models and acoustic indices: A case study on a shelterwood logged northern Michigan forest. Ecological Indicators, 2020, 113, 106244.	6.3	15
17	rFIA: An R package for estimation of forest attributes with the US Forest Inventory and Analysis database. Environmental Modelling and Software, 2020, 127, 104664.	4.5	81
18	Characterizing functional relationships between anthropogenic and biological sounds: a western New York state soundscape case study. Landscape Ecology, 2020, 35, 689-707.	4.2	8

#	Article	IF	CITATIONS
19	Beyond counts and averages: Relating geodiversity to dimensions of biodiversity. Global Ecology and Biogeography, 2020, 29, 696-710.	5.8	29
20	Remote Sensing of Geodiversity as a Link to Biodiversity. , 2020, , 225-253.		4
21	Spatial Linear Models. , 2020, , 155-174.		Ο
22	Towards connecting biodiversity and geodiversity across scales with satellite remote sensing. Global Ecology and Biogeography, 2019, 28, 548-556.	5.8	87
23	A Case Study Competition Among Methods for Analyzing Large Spatial Data. Journal of Agricultural, Biological, and Environmental Statistics, 2019, 24, 398-425.	1.4	216
24	Boreal tree growth exhibits decadalâ€scale ecological memory to drought and insect defoliation, but no negative response to their interaction. Journal of Ecology, 2019, 107, 1288-1301.	4.0	49
25	Efficient Algorithms for Bayesian Nearest Neighbor Gaussian Processes. Journal of Computational and Graphical Statistics, 2019, 28, 401-414.	1.7	71
26	Spatial Factor Models for High-Dimensional and Large Spatial Data: An Application in Forest Variable Mapping. Statistica Sinica, 2019, 29, 1155-1180.	0.3	13
27	Regionalâ€based mitigation to reduce wildlife–vehicle collisions. Journal of Wildlife Management, 2018, 82, 756-765.	1.8	9
28	Assessing impact of exogenous features on biotic phenomena in the presence of strong spatial dependence: A lake sturgeon case study in natural stream settings. PLoS ONE, 2018, 13, e0204150.	2.5	6
29	Geostatistical estimation of forest biomass in interior Alaska combining Landsat-derived tree cover, sampled airborne lidar and field observations. Remote Sensing of Environment, 2018, 212, 212-230.	11.0	39
30	Variable effects of climate on forest growth in relation to climate extremes, disturbance, and forest dynamics. Ecological Applications, 2017, 27, 1082-1095.	3.8	27
31	Joint hierarchical models for sparsely sampled high-dimensional LiDAR and forest variables. Remote Sensing of Environment, 2017, 190, 149-161.	11.0	8
32	A modelâ€based approach to wildland fire reconstruction using sediment charcoal records. Environmetrics, 2017, 28, e2450.	1.4	9
33	Spatial Variation in Nutrient and Water Color Effects on Lake Chlorophyll at Macroscales. PLoS ONE, 2016, 11, e0164592.	2.5	18
34	Observation-based blended projections from ensembles of regional climate models. Climatic Change, 2016, 138, 55-69.	3.6	5
35	Seedling survival responses to conspecific density, soil nutrients, and irradiance vary with age in a tropical forest. Ecology, 2016, 97, 2406-2415.	3.2	25
36	Modeling forest biomass and growth: Coupling long-term inventory and LiDAR data. Remote Sensing of Environment, 2016, 182, 1-12.	11.0	36

#	Article	IF	CITATIONS
37	On nearestâ€neighbor Gaussian process models for massive spatial data. Wiley Interdisciplinary Reviews: Computational Statistics, 2016, 8, 162-171.	3.9	44
38	Nonseparable dynamic nearest neighbor Gaussian process models for large spatio-temporal data with an application to particulate matter analysis. Annals of Applied Statistics, 2016, 10, 1286-1316.	1.1	73
39	Synergistic effects of climate and land cover: grassland birds are more vulnerable to climate change. Landscape Ecology, 2016, 31, 2275-2290.	4.2	33
40	Predicting tree biomass growth in the temperate–boreal ecotone: Is tree size, age, competition, or climate response most important?. Global Change Biology, 2016, 22, 2138-2151.	9.5	71
41	Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geostatistical Datasets. Journal of the American Statistical Association, 2016, 111, 800-812.	3.1	335
42	Spatial scaling of temporal changes in avian communities. Global Ecology and Biogeography, 2015, 24, 1236-1248.	5.8	9
43	Linear Models for Airborne-Laser-Scanning-Based Operational Forest Inventory With Small Field Sample Size and Highly Correlated LiDAR Data. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53, 5600-5612.	6.3	23
44	Landscape fragmentation affects responses of avian communities to climate change. Global Change Biology, 2015, 21, 2942-2953.	9.5	29
45	LiDAR based prediction of forest biomass using hierarchical models with spatially varying coefficients. Remote Sensing of Environment, 2015, 169, 113-127.	11.0	40
46	Spatial Analysis of Anthropogenic Landscape Disturbance and Buruli Ulcer Disease in Benin. PLoS Neglected Tropical Diseases, 2015, 9, e0004123.	3.0	10
47	spBayes for Large Univariate and Multivariate Point-Referenced Spatio-Temporal Data Models. Journal of Statistical Software, 2015, 63, .	3.7	85
48	Approaches to advance scientific understanding of macrosystems ecology. Frontiers in Ecology and the Environment, 2014, 12, 15-23.	4.0	57
49	Bayesian hierarchical models for spatially misaligned data in R. Methods in Ecology and Evolution, 2014, 5, 514-523.	5.2	16
50	Accounting for the spaceâ€varying nature of the relationships between temporal community turnover and the environment. Ecography, 2014, 37, 1073-1083.	4.5	10
51	Integrating forest inventory and analysis data into a LIDAR-based carbon monitoring system. Carbon Balance and Management, 2014, 9, 3.	3.2	26
52	Dynamic spatial regression models for spaceâ€varying forest stand tables. Environmetrics, 2014, 25, 596-609.	1.4	8
53	Editors Are Editors, Not Oracles. Bulletin of the Ecological Society of America, 2014, 95, 342-346.	0.2	2
54	Hierarchical Bayesian spatial models for predicting multiple forest variables using waveform LiDAR, hyperspectral imagery, and large inventory datasets. International Journal of Applied Earth Observation and Geoinformation, 2013, 22, 147-160.	2.8	18

#	Article	IF	CITATIONS
55	Strategies for minimizing sample size for use in airborne LiDAR-based forest inventory. Forest Ecology and Management, 2013, 292, 75-85.	3.2	37
56	Spatial regression methods capture prediction uncertainty in species distribution model projections through time. Global Ecology and Biogeography, 2013, 22, 242-251.	5.8	29
57	Should species distribution models account for spatial autocorrelation? A test of model projections across eight millennia of climate change. Global Ecology and Biogeography, 2013, 22, 760-771.	5.8	67
58	Modeling Complex Spatial Dependencies: Low-Rank Spatially Varying Cross-Covariances With Application to Soil Nutrient Data. Journal of Agricultural, Biological, and Environmental Statistics, 2013, 18, 274-298.	1.4	14
59	Multivariate Spatial Regression Models for Predicting Individual Tree Structure Variables Using LiDAR Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6, 6-14.	4.9	23
60	Tropical tree growth is correlated with soil phosphorus, potassium, and calcium, though not for legumes. Ecological Monographs, 2012, 82, 189-203.	5.4	128
61	Approximate Bayesian inference for large spatial datasets using predictive process models. Computational Statistics and Data Analysis, 2012, 56, 1362-1380.	1.2	47
62	An analysis of asthma hospitalizations, air pollution, and weather conditions in Los Angeles County, California. Science of the Total Environment, 2012, 425, 110-118.	8.0	65
63	Bayesian dynamic modeling for large space-time datasets using Gaussian predictive processes. Journal of Geographical Systems, 2012, 14, 29-47.	3.1	39
64	Comparing spatiallyâ€varying coefficients models for analysis of ecological data with nonâ€stationary and anisotropic residual dependence. Methods in Ecology and Evolution, 2011, 2, 143-154.	5.2	125
65	Improving Crop Model Inference Through Bayesian Melding With Spatially Varying Parameters. Journal of Agricultural, Biological, and Environmental Statistics, 2011, 16, 453-474.	1.4	7
66	Comparing and Blending Regional Climate Model Predictions for the American Southwest. Journal of Agricultural, Biological, and Environmental Statistics, 2011, 16, 586-605.	1.4	19
67	Adaptive Gaussian predictive process models for large spatial datasets. Environmetrics, 2011, 22, 997-1007.	1.4	37
68	Variational Bayesian methods for spatial data analysis. Computational Statistics and Data Analysis, 2011, 55, 3197-3217.	1.2	18
69	A Hierarchical Model for Quantifying Forest Variables Over Large Heterogeneous Landscapes With Uncertain Forest Areas. Journal of the American Statistical Association, 2011, 106, 31-48.	3.1	28
70	Spatial Modelling of Car Ownership Data: A Case Study from the United Kingdom. Applied Spatial Analysis and Policy, 2010, 3, 45-65.	2.0	8
71	Nonlinear hierarchical models for predicting cover crop biomass using Normalized Difference Vegetation Index. Remote Sensing of Environment, 2010, 114, 2833-2840.	11.0	28
72	Hierarchical Spatial Process Models for Multiple Traits in Large Genetic Trials. Journal of the American Statistical Association, 2010, 105, 506-521.	3.1	44

#	Article	IF	CITATIONS
73	Hierarchical Spatial Modeling of Additive and Dominance Genetic Variance for Large Spatial Trial Datasets. Biometrics, 2009, 65, 441-451.	1.4	20
74	Improving the performance of predictive process modeling for large datasets. Computational Statistics and Data Analysis, 2009, 53, 2873-2884.	1.2	168
75	Hierarchical spatial models for predicting tree species assemblages across large domains. Annals of Applied Statistics, 2009, 3, 1052-1079.	1.1	39
76	A Bayesian approach to multi-source forest area estimation. Environmental and Ecological Statistics, 2008, 15, 241-258.	3.5	28
77	Hierarchical multiresolution approaches for dense point-level breast cancer treatment data. Computational Statistics and Data Analysis, 2008, 52, 2650-2668.	1.2	5
78	Bayesian multivariate process modeling for prediction of forest attributes. Journal of Agricultural, Biological, and Environmental Statistics, 2008, 13, 60-83.	1.4	34
79	Gaussian Predictive Process Models for Large Spatial Data Sets. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2008, 70, 825-848.	2.2	673
80	Bayesian multi-resolution modeling for spatially replicated data sets with application to forest biomass data. Journal of Statistical Planning and Inference, 2007, 137, 3193-3205.	0.6	12
81	spBayes : An <i>R</i> Package for Univariate and Multivariate Hierarchical Point-referenced Spatial Models. Journal of Statistical Software, 2007, 19, 1-24.	3.7	158