
Jeong-Hwan Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3485346/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Organic Lightâ€Emitting Diodes with 30% External Quantum Efficiency Based on a Horizontally Oriented Emitter. Advanced Functional Materials, 2013, 23, 3896-3900.	7.8	495
2	Exciplexâ€Forming Coâ€host for Organic Lightâ€Emitting Diodes with Ultimate Efficiency. Advanced Functional Materials, 2013, 23, 4914-4920.	7.8	421
3	A Fluorescent Organic Lightâ€Emitting Diode with 30% External Quantum Efficiency. Advanced Materials, 2014, 26, 5684-5688.	11.1	397
4	Phosphorescent dye-based supramolecules for high-efficiency organic light-emitting diodes. Nature Communications, 2014, 5, 4769.	5.8	337
5	Highly Efficient Organic Lightâ€Emitting Diodes with Phosphorescent Emitters Having High Quantum Yield and Horizontal Orientation of Transition Dipole Moments. Advanced Materials, 2014, 26, 3844-3847.	11.1	316
6	An Exciplex Forming Host for Highly Efficient Blue Organic Light Emitting Diodes with Low Driving Voltage. Advanced Functional Materials, 2015, 25, 361-366.	7.8	267
7	Blue Phosphorescent Organic Lightâ€Emitting Diodes Using an Exciplex Forming Coâ€host with the External Quantum Efficiency of Theoretical Limit. Advanced Materials, 2014, 26, 4730-4734.	11.1	241
8	Skyâ€Blue Phosphorescent OLEDs with 34.1% External Quantum Efficiency Using a Low Refractive Index Electron Transporting Layer. Advanced Materials, 2016, 28, 4920-4925.	11.1	238
9	Thermally Activated Delayed Fluorescence from Azasiline Based Intramolecular Charge-Transfer Emitter (DTPDDA) and a Highly Efficient Blue Light Emitting Diode. Chemistry of Materials, 2015, 27, 6675-6681.	3.2	198
10	Highly Enhanced Light Extraction from Surface Plasmonic Loss Minimized Organic Lightâ€Emitting Diodes. Advanced Materials, 2013, 25, 3571-3577.	11.1	166
11	Langevin and Trapâ€Assisted Recombination in Phosphorescent Organic Light Emitting Diodes. Advanced Functional Materials, 2014, 24, 4681-4688.	7.8	153
12	Exciplex-Forming Co-Host-Based Red Phosphorescent Organic Light-Emitting Diodes with Long Operational Stability and High Efficiency. ACS Applied Materials & Interfaces, 2017, 9, 3277-3281.	4.0	124
13	The Mechanism of Charge Generation in Chargeâ€Generation Units Composed of pâ€Doped Holeâ€Transporting Layer/HATCN/nâ€Doped Electronâ€Transporting Layers. Advanced Functional Materials, 2012, 22, 855-860.	7.8	101
14	Highly Efficient Sky-Blue Fluorescent Organic Light Emitting Diode Based on Mixed Cohost System for Thermally Activated Delayed Fluorescence Emitter (2CzPN). ACS Applied Materials & Interfaces, 2016, 8, 9806-9810.	4.0	88
15	A high performance inverted organic light emitting diode using an electron transporting material with low energy barrier for electron injection. Organic Electronics, 2011, 12, 1763-1767.	1.4	70
16	A high performance transparent inverted organic light emitting diode with 1,4,5,8,9,11-hexaazatriphenylenehexacarbonitrile as an organic buffer layer. Journal of Materials Chemistry, 2012, 22, 15262.	6.7	63
17	Charge carrier mobility in thin films of organic semiconductors by the gated van der Pauw method. Nature Communications, 2017, 8, 14975.	5.8	62
18	Perovskite Lightâ€Emitting Diodes with Improved Outcoupling Using a Highâ€Index Contrast Nanoarray. Small. 2019. 15. e1900135.	5.2	53

JEONG-HWAN LEE

#	Article	IF	CITATIONS
19	Controlling Emitting Dipole Orientation with Methyl Substituents on Main Ligand of Iridium Complexes for Highly Efficient Phosphorescent Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2015, 3, 1191-1196.	3.6	52
20	Luminescence from oriented emitting dipoles in a birefringent medium. Optics Express, 2015, 23, A279.	1.7	51
21	Formation of perfect ohmic contact at indium tin oxide/N,N′-di(naphthalene-1-yl)-N,N′-diphenyl-benzidine interface using ReO3. Scientific Reports, 2014, 4, 3902.	1.6	47
22	Boronâ€Based Multiâ€Resonance TADF Emitter with Suppressed Intermolecular Interaction and Isomer Formation for Efficient Pure Blue OLEDs. Small, 2022, 18, e2107574.	5.2	40
23	Determination of the interface energy level alignment of a doped organic hetero-junction using capacitance–voltage measurements. Organic Electronics, 2012, 13, 2346-2351.	1.4	36
24	Highly enhanced light extraction from organic light emitting diodes with little image blurring and good color stability. Organic Electronics, 2015, 17, 115-120.	1.4	36
25	Managing local triplet excited states of boron-based TADF emitters for fast spin-flip process: Toward highly efficient TADF-OLEDs with low efficiency roll-off. Chemical Engineering Journal, 2021, 423, 130224.	6.6	35
26	Vacuum Nanohole Array Embedded Phosphorescent Organic Light Emitting Diodes. Scientific Reports, 2015, 5, 8685.	1.6	33
27	Finely Tuned Blue Iridium Complexes with Varying Horizontal Emission Dipole Ratios and Quantum Yields for Phosphorescent Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2015, 3, 211-220.	3.6	33
28	An organic p–n junction as an efficient and cathode independent electron injection layer for flexible inverted organic light emitting diodes. Organic Electronics, 2012, 13, 545-549.	1.4	28
29	Tailoring the refractive index and surface defects of CsPbBr3 quantum dots via alkyl cation-engineering for efficient perovskite light-emitting diodes. Chemical Engineering Journal, 2021, 425, 130678.	6.6	24
30	High contrast flexible organic light emitting diodes under ambient light without sacrificing luminous efficiency. Organic Electronics, 2012, 13, 826-832.	1.4	23
31	Ultrafast Excitonic Behavior in Two-Dimensional Metal–Semiconductor Heterostructure. ACS Photonics, 2019, 6, 1379-1386.	3.2	23
32	Overlappingâ€Gate Organic Lightâ€Emitting Transistors. Advanced Electronic Materials, 2019, 5, 1800437.	2.6	22
33	Doping-concentration-dependent hole mobility in a ReO ₃ doped organic semiconductor of 4,4′,4″-tris(<i>N</i> -(2-naphthyl)- <i>N</i> -phenyl-amino)-triphenylamine. Applied Physics Letters, 2013, 102 183301.	2, 1.5	21
34	Highly efficient inverted top emitting organic light emitting diodes using a transparent top electrode with color stability on viewing angle. Applied Physics Letters, 2014, 104, 073301.	1.5	21
35	Influence of indium-tin-oxide and emitting-layer thicknesses on light outcoupling of perovskite light-emitting diodes. Nano Convergence, 2019, 6, 26.	6.3	21
36	Electron injection and transport for high-performance inverted organic light-emitting diodes. Journal of Information Display, 2013, 14, 39-48.	2.1	20

JEONG-HWAN LEE

#	Article	IF	CITATIONS
37	High performance organic planar heterojunction solar cells by controlling the molecular orientation. Current Applied Physics, 2013, 13, 7-11.	1.1	19
38	Unveiling the Role of Dopant Polarity in the Recombination and Performance of Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2018, 28, 1800001.	7.8	18
39	A strategy to boost external quantum efficiency of organic light-emitting transistors. Applied Physics Letters, 2019, 115, .	1.5	12
40	Molecular alignment and nanostructure of 1,4,5,8,9,11-hexaazatriphenylene-hexanitrile (HATCN) thin films on organic surfaces. Journal of Materials Chemistry C, 2013, 1, 1260-1264.	2.7	11
41	Optical analysis of organic photovoltaic cells incorporating graphene as a transparent electrode. Organic Electronics, 2013, 14, 1496-1503.	1.4	11
42	Parylene C-AlN Multilayered Thin-Film Passivation for Organic Light-Emitting Diode Using a Single Deposition Chamber. Electronic Materials Letters, 2020, 16, 466-472.	1.0	11
43	Bicarbazole-triazine hybrid type mixed host materials for blue phosphorescent OLEDs with enhanced efficiency and lifetime. Journal of Materials Chemistry C, 2022, 10, 8602-8608.	2.7	11
44	Highly efficient inverted top emitting organic light emitting diodes using a horizontally oriented green phosphorescent emitter. Organic Electronics, 2014, 15, 2715-2718.	1.4	9
45	Highly efficient bluish green phosphorescent organic light-emitting diodes based on heteroleptic iridium(III) complexes with phenylpyridine main skeleton. Organic Electronics, 2014, 15, 1687-1694.	1.4	9
46	Improving Electrical Stability of a-InGaZnO Thin-Film Transistors with Thermally Deposited Self-Assembled Monolayers. Electronic Materials Letters, 2020, 16, 451-456.	1.0	9
47	Solution-Processed Fabrication of Light-Emitting Diodes Using CsPbBr ₃ Perovskite Nanocrystals. ACS Applied Nano Materials, 2020, 3, 11801-11810.	2.4	8
48	Phosphorescent OLEDs: Sky-Blue Phosphorescent OLEDs with 34.1% External Quantum Efficiency Using a Low Refractive Index Electron Transporting Layer (Adv. Mater. 24/2016). Advanced Materials, 2016, 28, 4758-4758.	11.1	6
49	Analysis of the charge transfer and separation in electrically doped organic semiconductors by electron spin resonance spectroscopy. Organic Electronics, 2019, 67, 242-246.	1.4	6
50	Thermal degradation of <i>p</i> -doped organic homojunction. AIP Advances, 2020, 10, .	0.6	5
51	The mechanism of charge generation in charge generation units containing HATCN for high-luminance tandem OLED display. Proceedings of SPIE, 2012, , .	0.8	2
52	Blue phosphorescent OLEDs with 34.1% external quantum efficiency using a low refractive index electron transporting material. Proceedings of SPIE, 2016, , .	0.8	2
53	Hole mobility in various transition-metal-oxides doped organic semiconductor films. Applied Physics Letters, 2017, 110, .	1.5	2
54	Optimal Nitrogen Incorporation in Nickel Silicide for Thermally Stable Contact Formation. Journal of Nanoscience and Nanotechnology, 2019, 19, 6468-6472.	0.9	2

JEONG-HWAN LEE

#	Article	IF	CITATIONS
55	Charge generation efficiency of electrically doped organic semiconductors. Materials Today Energy, 2021, 21, 100709.	2.5	2
56	An organic p-n junction for electrode-independent electron injection layer in organic light emitting diodes. , 2012, , .		1
57	Organic Leds: Exciplex-Forming Co-host for Organic Light-Emitting Diodes with Ultimate Efficiency (Adv. Funct. Mater. 39/2013). Advanced Functional Materials, 2013, 23, 4913-4913.	7.8	1
58	Organic Electronics: An Exciplex Forming Host for Highly Efficient Blue Organic Light Emitting Diodes with Low Driving Voltage (Adv. Funct. Mater. 3/2015). Advanced Functional Materials, 2015, 25, 342-342.	7.8	1
59	A Fluorescent Organic Light Emitting Diode with 100% Internal Quantum Efficiency. , 2014, , .		1
60	Inverted OLEDs for flexible displays. Proceedings of SPIE, 2012, , .	0.8	0
61	Organic Light-Emitting Diodes: The Mechanism of Charge Generation in Charge-Generation Units Composed of p-Doped Hole-Transporting Layer/HATCN/n-Doped Electron-Transporting Layers (Adv.) Tj ETQq1 1 ().7 %4 314 r	ˈgƁ∏ /Overlo
62	Enhanced light out-coupling from surface plasmonic loss minimized transparent organic light-emitting diodes. , 2013, , .		0
63	Extremely high efficiency phosphorescent organic light-emitting diodes with horizontal emitting dipoles. Proceedings of SPIE, 2014, , .	0.8	0
64	Crystallinity and interface of 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile thin films between organic and transparent conductive oxide layers. Applied Physics Express, 2015, 8, 051601.	1.1	0
65	PhOLEDs: Finely Tuned Blue Iridium Complexes with Varying Horizontal Emission Dipole Ratios and Quantum Yields for Phosphorescent Organic Light-Emitting Diodes (Advanced Optical Materials) Tj ETQq1 1 0.78	34 31 ⁄4 rgB	T /Øverlock
66	Correction to "Ultrafast Excitonic Behavior in Two-Dimensional Metal–Semiconductor Heterostructure. ACS Photonics, 2019, 6, 2181-2181.	3.2	0