Mauro F Pereira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3485201/publications.pdf

Version: 2024-02-01

108	1,294	27 h-index	35
papers	citations		g-index
110	110	110	412 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Recent Advances in Superlattice Frequency Multipliers. NATO Science for Peace and Security Series B: Physics and Biophysics, 2021, , 101-116.	0.2	2
2	Controlling Nonlinearities in Semiconductor Superlattice Multipliers. , 2021, , .		0
3	Giant controllable gigahertz to terahertz nonlinearities in superlattices. Scientific Reports, 2020, 10, 15950.	1.6	26
4	Superlattice nonlinearities for Gigahertz-Terahertz generation in harmonic multipliers. Nanophotonics, 2020, 9, 3941-3952.	2.9	24
5	Materials for Nonlinear Optics in the GHz-THz Range. , 2019, , .		O
6	Controlling the harmonic conversion efficiency in semiconductor superlattices by interface roughness design. AIP Advances, 2019, 9, .	0.6	34
7	Potential and limits of superlattice multipliers coupled to different input power sources. Journal of Nanophotonics, 2019, 13, 1.	0.4	22
8	Numerical studies of superlattice multipliers performance. , 2019, , .		3
9	Luminescence and absorption in short period superlattices. Optical and Quantum Electronics, 2018, 50, 1.	1.5	1
10	Efficient Algorithms for Optical Properties of Short Period Semiconductor Superlattices. , 2018, , .		0
11	Harmonic Generation in Semiconductor Superlattices with Applications from the 100 GHz to the 1 THz Range. , 2018, , .		O
12	Analytical Expressions for Numerical Characterization of Semiconductors per Comparison with Luminescence. Materials, 2018, 11, 2.	1.3	42
13	Analytical expressions for the luminescence of dilute quaternary InAs(N,Sb) semiconductors. Journal of Nanophotonics, 2017, 11, 026005.	0.4	2
14	Anisotropic Medium Approach for the Optical Nonlinearities of Dilute Nitride Superlattices. NATO Science for Peace and Security Series B: Physics and Biophysics, 2017, , 113-120.	0.2	1
15	Theory and measurements of harmonic generation in semiconductor superlattices with applications in the 100 GHz to 1 THz range. Physical Review B, 2017, 96, .	1.1	52
16	Automated numerical characterization of dilute semiconductors per comparison with luminescence. Optical and Quantum Electronics, 2017, 49, 1.	1.5	1
17	Analytical solutions for semiconductor luminescence including Coulomb correlations with applications to dilute bismides. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 321.	0.9	25
18	The linewidth enhancement factor of intersubband lasers. , 2017, , .		0

#	Article	IF	Citations
19	Advances in the science of light. Optical and Quantum Electronics, 2016, 48, 1.	1.5	О
20	The linewidth enhancement factor of intersubband lasers: From a two-level limit to gain without inversion conditions. Applied Physics Letters, 2016, 109, .	1.5	36
21	Anisotropy and nonlinearity in superlattices II. Optical and Quantum Electronics, 2016, 48, 1.	1.5	2
22	Simple electron-electron scattering in non-equilibrium Green's function simulations. Journal of Physics: Conference Series, 2016, 696, 012013.	0.3	28
23	Anisotropy and nonlinearity in superlattices. Optical and Quantum Electronics, 2016, 48, 1.	1.5	4
24	Band anticrossing and luminescence emission in dilute InAs <inf>1−x−y</inf> N <inf>x</inf> Sb <inf>y</inf> quaternary alloys., 2015,,.		0
25	Progress on TERA-MIR Radiation: Materials, Generation, Detection, and Applications. , 2015, , .		0
26	The relevance of dephasing in THz valence band polariton dispersion relations. Optical and Quantum Electronics, 2015, 47, 937-943.	1.5	0
27	TERA-MIR radiation: materials, generation, detection and applications II. Optical and Quantum Electronics, 2015, 47, 815-820.	1.5	18
28	Many body effects in THz valence band polaritons. , 2015, , .		0
29	Numerical simulation of high impedance T-match antennas for terahertz photomixers. Proceedings of SPIE, $2015, $, .	0.8	0
30	Simulations of mid infrared emission of InAsN semiconductors. Optical and Quantum Electronics, 2015, 47, 829-834.	1.5	2
31	Numerical study of high impedance T-match antennas for terahertz photomixers. Optical and Quantum Electronics, 2015, 47, 913-922.	1.5	3
32	Mid infrared luminescence of dilute nitride semiconductors: microscopic approach vs experiments. , 2014, , .		0
33	THz valence band polaritons and antipolaritons. Proceedings of SPIE, 2014, , .	0.8	0
34	Coupling of THz radiation with intervalence band transitions in microcavities. Optics Express, 2014, 22, 3439.	1.7	34
35	TERA-MIR radiation: materials, generation, detection and applications. Optical and Quantum Electronics, 2014, 46, 491-493.	1.5	17
36	Interaction of valence band excitations and terahertz TE-polarized cavity modes. Optical and Quantum Electronics, 2014, 46, 527-531.	1.5	9

#	Article	IF	Citations
37	THz intervalence band antipolaritons. Journal of Physics: Conference Series, 2014, 526, 012006.	0.3	O
38	The relevance of dephasing in THz intervalence band antipolariton dispersion relations. , 2014, , .		O
39	Microscopic theory for the luminescence of mid infrared semiconductor materials. , $2014, \ldots$		O
40	THz and Mid Infrared (TERA-MIR) semiconductor materials: From microscopic theory to industrial applications. , 2014 , , .		0
41	Intervalence THz Antipolaritons. NATO Science for Peace and Security Series B: Physics and Biophysics, 2014, , 19-24.	0.2	O
42	Intersubband Dispersive Gain Media. NATO Science for Peace and Security Series B: Physics and Biophysics, 2014, , 117-121.	0.2	0
43	THz intervalence band polaritons and antipolaritons. , 2013, , .		O
44	Impact of intersubband dispersive gain in semiconductor quantum optics. , 2012, , .		0
45	Intersubband thermophotovoltaics. Journal of Physics: Conference Series, 2012, 367, 012011.	0.3	O
46	Dilute nitride band engineering: A tool for intersubband gain without population inversion. , 2011, , .		0
47	Concepts for gain without inversion through dilute nitride band engineering. , $2011, \ldots$		O
48	Engineering intersubband population inversion with dilute nitrides., 2011,,.		0
49	Introduction to the OQE special issue on Numerical Simulation of Optoelectronic Devices NUSOD'10. Optical and Quantum Electronics, 2011, 42, 657-658.	1.5	O
50	Intersubband gain without global inversion through dilute nitride band engineering. Applied Physics Letters, 2011, 98, .	1.5	37
51	Predictive microscopic approach to transport in THz quantum cascade lasers. Journal of Physics: Conference Series, 2010, 242, 012009.	0.3	O
52	Valence intersubband gain without population inversion. Open Physics, 2010, 8, .	0.8	1
53	21 st century optical engineering: Manipulating nonequilibrium many body effects to Create new TERA-MIR sources. , 2010, , .		0
54	Predictive microscopic approach to transport and optics in THz quantum cascade lasers. , 2010, , .		0

#	Article	IF	CITATIONS
55	Impact of momentum dependent matrix elements on scattering effects in quantum cascade lasers. Physica Status Solidi (B): Basic Research, 2009, 246, 329-331.	0.7	37
56	Interband vs. intersubband polaritons and the relevance of quantum confinement. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 424-427.	0.8	0
57	The influence of dephasing in the coupling of light with intersubband transitions. Microelectronics Journal, 2009, 40, 841-843.	1.1	9
58	Momentum dependent scattering matrix elements in quantum cascade laser transport. Microelectronics Journal, 2009, 40, 869-871.	1.1	29
59	Nonequilibrium many body theory for quantum transport in terahertz quantum cascade lasers. Applied Physics Letters, 2009, 95, .	1.5	104
60	A microscopic approach for THz intersubband challenges. , 2009, , .		1
61	Predictive nonequilibrium Green's function simulation of transport in THz quantum cascade lasers., 2009,,.		O
62	FAR INFRARED LASERS WITHOUT INVERSION BASED ON INTERSUBBAND TRANSITIONS IN SEMICONDUCTORS. , 2009, , .		0
63	Many body theory of THz intervalence gain in quantum wells. Optical and Quantum Electronics, 2008, 40, 1091-1095.	1.5	2
64	Nonequilibrium Green's function simulation of quantum cascade laser structures. , 2008, , .		0
65	Intervalence transverse-electric mode terahertz lasing without population inversion. Physical Review B, 2008, 78, .	1.1	40
66	Intersubband vs interband-light coupling in semiconductors. Optical and Quantum Electronics, 2008, 40, 325-329.	1.5	1
67	Intersubband lasing without inversion. , 2008, , .		0
68	The alpha factor of a quantum cascade laser. , 2008, , .		0
69	Current challenges for the development of efficient short wavelength mid infrared quantum cascade lasers. , 2008, , .		0
70	Intersubband Antipolaritons in Quantum Cascade Laser Structures. Acta Physica Polonica A, 2008, 113, 783-786.	0.2	1
71	Fingerprints of spatial charge transfer in quantum cascade lasers. Journal of Applied Physics, 2007, 102, .	1,1	32
72	Intersubband antipolaritons: Microscopic approach. Physical Review B, 2007, 75, .	1.1	40

#	Article	IF	Citations
73	Intersubband Antipolariton: A New Quasiparticle. , 2007, , .		О
74	Microscopic theory for intersubband spontaneous emission. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 356-359.	0.8	2
75	Characterization of intersubband devices combining a nonequilibrium many body theory with transmission spectroscopy experiments. Journal of Materials Science: Materials in Electronics, 2007, 18, 689-694.	1.1	29
76	Microscopic Intersubband Optics: Nonequilibrium Many-Body Physics Meets Device Engineering. , 2006,		0
77	Probing the electronic and optical properties of quantum cascade lasers under operating conditions. , 2006, 6386, 81.		0
78	Microscopic theory for the intersubband optical responses of quantum well laser media., 2005,,.		0
79	Microscopic theory for the valence intersubband absorption of quantum wells. Microelectronic Engineering, 2005, 81, 510-513.	1.1	3
80	Effect of Coulomb corrections and mean field on gain and absorption in quantum cascade lasers. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 3027-3030.	0.8	6
81	Controlling many-body effects in the midinfrared gain and terahertz absorption of quantum cascade laser structures. Physical Review B, 2004, 69, .	1.1	52
82	Many-body theory for multiple intersubband absorption in heterostructures. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 17, 618-619.	1.3	2
83	Coulomb and bandstructure effects in the intersubband optical spectra of Ill–V quantum wells. Materials Science in Semiconductor Processing, 2003, 6, 149-152.	1.9	2
84	The influence of many body and electron nonparabolicity effects in the intersubband optical spectra of Ill–V quantum wells. Microelectronic Engineering, 2003, 69, 261-264.	1.1	3
85	The Influence of Many-Body and Bandstructure Effects in the Design of High Power Diode Lasers. Physica Status Solidi (B): Basic Research, 2002, 232, 134-137.	0.7	3
86	Nonlinear polaritons in Il–VI MQW heterostructures. Journal of Crystal Growth, 2000, 214-215, 862-865.	0.7	1
87	Increasing Absorption Bistability in Coupled Band Quantum Wells. Physica A: Statistical Mechanics and Its Applications, 2000, 283, 277-280.	1.2	0
88	Many-body theory for II–VI semiconductor laser media. , 1999, , 61-73.		4
89	Optical gain characteristics and excitonic nonlinearities in II–VI laser diodes. Journal of Crystal Growth, 1998, 184-185, 575-579.	0.7	6
90	Microscopic Theory for the Optical Properties of Coulomb-Correlated Semiconductors. Physica Status Solidi (B): Basic Research, 1998, 206, 477-491.	0.7	28

#	Article	IF	Citations
91	Influence of Coulomb correlations on gain and stimulated emission in (Zn,Cd)Se/Zn(S,Se)/(Zn,Mg)(S,Se) quantum-well lasers. Physical Review B, 1998, 58, 2055-2063.	1.1	33
92	Microscopic theory for the influence of Coulomb correlations in the light-emission properties of semiconductor quantum wells. Physical Review B, 1998, 58, 2064-2076.	1.1	73
93	Nonlinear Polaritons in Anisotropic Superlattices. Physica Status Solidi A, 1997, 164, 199-203.	1.7	5
94	Bleaching of excitonic absorption in II–VI laser diodes under lasing conditions. Journal of Crystal Growth, 1996, 159, 661-666.	0.7	3
95	Highâ€density effects, stimulated emission, and electrooptical properties of ZnCdSe/ZnSe single quantum wells and laser diodes. Physica Status Solidi (B): Basic Research, 1996, 194, 199-217.	0.7	31
96	Green's functions theory for semiconductor-quantum-well laser spectra. Physical Review B, 1996, 53, 16485-16496.	1.1	32
97	Analytical solutions for the optical absorption of semiconductor superlattices. Physical Review B, 1995, 52, 1978-1983.	1.1	30
98	Theory of nonlinear optical absorption in coupledâ€band quantum wells with manyâ€body effects. Applied Physics Letters, 1994, 64, 279-281.	1.5	42
99	Effects of strain and Coulomb interaction on gain and refractive index in quantum-well lasers. Journal of the Optical Society of America B: Optical Physics, 1993, 10, 765.	0.9	32
100	Optical nonlinearities in strainedâ€layer InGaAs/GaAs multiple quantum wells. Applied Physics Letters, 1992, 61, 1745-1747.	1.5	35
101	Manyâ€body treatment on the modulation response in a strained quantum well semiconductor laser medium. Applied Physics Letters, 1992, 61, 758-760.	1.5	36
102	Manyâ€body effects in the gain spectra of strained quantum wells. Applied Physics Letters, 1991, 59, 2941-2943.	1.5	31
103	Exciton binding energies in semiconductor superlattices: An anisotropic-effective-medium approach. Physical Review B, 1990, 42, 7084-7089.	1.1	42
104	Facing the challenges of THz quantum cascade laser device development: the relevance of nonequilibrium many body theories. , 0 , , .		0
105	Many body theory for luminescence in quantum wells. , 0, , .		0
106	Simulation of Transport and Gain in Quantum Cascade Lasers. Advances in Solid State Physics, 0, , 369-382.	0.8	6
107	Modeling of transport and gain in quantum cascade lasers. , 0, , .		0
108	Many body and nonparabolicity effects in the intersubband transitions of conduction and valence bands of quantum well media. , 0, , .		0