Jurgen Denecke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3484994/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Living on the edge: the role of Atgolginâ€84A at the plant ER–Golgi interface. Journal of Microscopy, 2020, 280, 158-173.	1.8	9
2	Trafficking routes to the plant vacuole: connecting alternative and classical pathways. Journal of Experimental Botany, 2018, 69, 79-90.	4.8	38
3	Predominant Golgi Residency of the Plant K/HDEL Receptor Is Essential for Its Function in Mediating ER Retention. Plant Cell, 2018, 30, 2174-2196.	6.6	19
4	Lysosomal and vacuolar sorting: not so different after all!. Biochemical Society Transactions, 2016, 44, 891-897.	3.4	32
5	Routes to and from the plasma membrane: bulk flow versus signal mediated endocytosis. Plant Signaling and Behavior, 2014, 9, e972813.	2.4	10
6	Golgi-Dependent Transport of Vacuolar Sorting Receptors Is Regulated by COPII, AP1, and AP4 Protein Complexes in Tobacco Â. Plant Cell, 2014, 26, 1308-1329.	6.6	39
7	Mechanisms and Concepts Paving the Way towards a Complete Transport Cycle of Plant Vacuolar Sorting Receptors. Plant Cell, 2012, 24, 1714-1732.	6.6	61
8	Synthesis of vesicle cargo determines amplitude of Ca2+-sensitive exocytosis. Cell Calcium, 2012, 52, 283-288.	2.4	5
9	Secretory Pathway Research: The More Experimental Systems the Better. Plant Cell, 2012, 24, 1316-1326.	6.6	39
10	Evidence for Sequential Action of <scp>Rab</scp> 5 and <scp>Rab</scp> 7 <scp>GTP</scp> ases in Prevacuolar Organelle Partitioning. Traffic, 2012, 13, 338-354.	2.7	78
11	SLO2, a mitochondrial pentatricopeptide repeat protein affecting several RNA editing sites, is required for energy metabolism. Plant Journal, 2012, 71, 836-849.	5.7	113
12	Vacuolar Transport in Tobacco Leaf Epidermis Cells Involves a Single Route for Soluble Cargo and Multiple Routes for Membrane Cargo. Plant Cell, 2011, 23, 3007-3025.	6.6	85
13	A Recycling-Defective Vacuolar Sorting Receptor Reveals an Intermediate Compartment Situated between Prevacuoles and Vacuoles in Tobacco. Plant Cell, 2011, 22, 3992-4008.	6.6	77
14	Intermediate Organelles of the Plant Secretory Pathway: Identity and Function. Traffic, 2008, 9, 1599-1612.	2.7	75
15	The Syntaxins SYP31 and SYP81 Control ER–Golgi Trafficking in the Plant Secretory Pathway. Traffic, 2008, 9, 1629-1652.	2.7	76
16	What Is Moving in the Secretory Pathway of Plants?. Plant Physiology, 2008, 147, 1493-1503.	4.8	67
17	Tomato spotted wilt virus glycoproteins induce the formation of endoplasmic reticulum- and Golgi-derived pleomorphic membrane structures in plant cells. Journal of General Virology, 2008, 89, 1811-1818.	2.9	54
18	<i>Inâ€fvivo</i> analysis of the lumenal binding protein (BiP) reveals multiple functions of its ATPase domain. Plant Journal. 2007, 52, 987-1000.	5.7	11

JURGEN DENECKE

#	Article	IF	CITATIONS
19	Golgi-Mediated Vacuolar Sorting of the Endoplasmic Reticulum Chaperone BiP May Play an Active Role in Quality Control within the Secretory Pathway. Plant Cell, 2006, 18, 198-211.	6.6	99
20	Overexpression of the Arabidopsis Syntaxin PEP12/SYP21 Inhibits Transport from the Prevacuolar Compartment to the Lytic Vacuole in Vivo. Plant Cell, 2006, 18, 2275-2293.	6.6	97
21	Targeting of the Plant Vacuolar Sorting Receptor BP80 Is Dependent on Multiple Sorting Signals in the Cytosolic Tail. Plant Cell, 2006, 18, 1477-1497.	6.6	86
22	The ER Folding Helpers: AÂConnection Between Protein Maturation, Stress Responses and Plant Development. Plant Cell Monographs, 2006, , 45-74.	0.4	0
23	Receptor Salvage from the Prevacuolar Compartment Is Essential for Efficient Vacuolar Protein Targeting. Plant Cell, 2005, 17, 132-148.	6.6	163
24	Endoplasmic Reticulum Export Sites and Golgi Bodies Behave as Single Mobile Secretory Units in Plant Cells[W]. Plant Cell, 2004, 16, 1753-1771.	6.6	258
25	ER quality control can lead to retrograde transport from the ER lumen to the cytosol and the nucleoplasm in plants. Plant Journal, 2003, 34, 269-281.	5.7	118
26	The GTPase ARF1p Controls the Sequence-Specific Vacuolar Sorting Route to the Lytic Vacuole. Plant Cell, 2003, 15, 1242-1256.	6.6	111
27	Protein-protein interactions in the secretory pathway, a growing demand for experimental approaches in vivo. Plant Molecular Biology, 2002, 50, 887-902.	3.9	7
28	A Vacuolar Sorting Domain May Also Influence the Way in Which Proteins Leave the Endoplasmic Reticulum. Plant Cell, 2001, 13, 2021-2032.	6.6	87
29	Secretory Bulk Flow of Soluble Proteins Is Efficient and COPII Dependent. Plant Cell, 2001, 13, 2005-2020.	6.6	136
30	A vacuolar sorting domain may also influence the way in which proteins leave the endoplasmic reticulum. Plant Cell, 2001, 13, 2021-32.	6.6	37
31	Sorting of soluble proteins in the secretory pathway of plants. Current Opinion in Plant Biology, 2000, 3, 461-468.	7.1	90
32	ER Retention of Soluble Proteins: Retrieval, Retention, or Both?. Plant Cell, 2000, 12, 1517.	6.6	0
33	In Situ Localization and in Vitro Induction of Plant COPI-Coated Vesicles. Plant Cell, 2000, 12, 2219-2235.	6.6	188
34	Saturation of the Endoplasmic Reticulum Retention Machinery Reveals Anterograde Bulk Flow. Plant Cell, 1999, 11, 2233-2247.	6.6	133
35	The Endoplasmic Reticulum—Gateway of the Secretory Pathway. Plant Cell, 1999, 11, 615-628.	6.6	284
36	Anticipating Endoplasmic Reticulum Stress: A Novel Early Response before Pathogenesis-Related Gene Induction. Plant Cell, 1999, 11, 1935-1943.	6.6	121

JURGEN DENECKE

#	Article	IF	CITATIONS
37	Overexpression of BiP in Tobacco Alleviates Endoplasmic Reticulum Stress. Plant Cell, 1999, 11, 459-469.	6.6	176
38	Calreticulin and calnexin in plants. Trends in Plant Science, 1998, 3, 396-399.	8.8	72
39	Cell Wall-Degrading Enzymes from Erwinia carotovora Cooperate in the Salicylic Acid-Independent Induction of a Plant Defense Response. Molecular Plant-Microbe Interactions, 1998, 11, 23-32.	2.6	85
40	BiP and Calreticulin Form an Abundant Complex That Is Independent of Endoplasmic Reticulum Stress. Plant Cell, 1998, 10, 813-823.	6.6	92
41	BiP and Calreticulin Form an Abundant Complex That Is Independent of Endoplasmic Reticulum Stress. Plant Cell, 1998, 10, 813.	6.6	3
42	Meeting report. The plant secretory system: mechanisms, pathways and applications in biotechnology. (Meeting held at York University, UK, 2-5 July 1997). Journal of Experimental Botany, 1998, 49, 1073-1079.	4.8	0
43	Salicylic acid and the plant pathogen Erwinia carotovora induce defense genes via antagonistic pathways. Plant Journal, 1997, 11, 115-123.	5.7	126
44	Chapter 24 The Use of Protoplasts to Study Protein Synthesis and Transport by the Plant Endomembrane System. Methods in Cell Biology, 1995, 50, 335-348.	1.1	24
45	The tobacco homolog of mammalian calreticulin is present in protein complexes in vivo Plant Cell, 1995, 7, 391-406.	6.6	237
46	The Role of the Endoplasmic Reticulum in Protein Synthesis, Modification and Intracellular Transport. Journal of Experimental Botany, 1993, 44, 1417-1444.	4.8	119
47	The bar gene has selectable and screenable marker in plant engineering. Methods in Enzymology, 1992, 216, 415-426.	1.0	105
48	Plant and mammalian sorting signals for protein retention in the endoplasmic reticulum contain a conserved epitope EMBO Journal, 1992, 11, 2345-2355.	7.8	243
49	Plant and mammalian sorting signals for protein retention in the endoplasmic reticulum contain a conserved epitope. EMBO Journal, 1992, 11, 2345-55.	7.8	129
50	The tobacco luminal binding protein is encoded by a multigene family Plant Cell, 1991, 3, 1025-1035.	6.6	222
51	The Tobacco Luminal Binding Protein Is Encoded by a Multigene Family. Plant Cell, 1991, 3, 1025.	6.6	23
52	Protein secretion in plant cells can occur via a default pathway Plant Cell, 1990, 2, 51-59.	6.6	261