
Raphael Levy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/348430/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Atomic force microscopy characterization of polyethylene terephthalate grafting with poly(styrene) Tj ETQq1 1	0.784314 1.3	rgBT /Overloc
2	Development of amyloid beta gold nanorod aggregates as optoacoustic probes. PLoS ONE, 2022, 17, e0259608.	1.1	1
3	The long life of unicorns. Precision Nanomedicine, 2020, 3, .	0.4	2
4	<i>In vivo</i> fate of free and encapsulated iron oxide nanoparticles after injection of labelled stem cells. Nanoscale Advances, 2019, 1, 367-377.	2.2	16
5	Non-invasive imaging reveals conditions that impact distribution and persistence of cells after in vivo administration. Stem Cell Research and Therapy, 2018, 9, 332.	2.4	66
6	Multimodal cell tracking from systemic administration to tumour growth by combining gold nanorods and reporter genes. ELife, 2018, 7, .	2.8	33
7	Ex vivo live cell tracking in kidney organoids using light sheet fluorescence microscopy. PLoS ONE, 2018, 13, e0199918.	1.1	22
8	Computational and Experimental Investigation of the Structure of Peptide Monolayers on Gold Nanoparticles. Langmuir, 2017, 33, 438-449.	1.6	25
9	Characterizing Self-Assembled Monolayers on Gold Nanoparticles. Bioconjugate Chemistry, 2017, 28, 11-22.	1.8	71
10	Evaluation of quantum dot conjugated antibodies for immunofluorescent labelling of cellular targets. Beilstein Journal of Nanotechnology, 2017, 8, 1238-1249.	1.5	25
11	Differential sub-nuclear distribution of hypoxia-inducible factors (HIF)-1 and -2 alpha impacts on their stability and mobility. Open Biology, 2016, 6, 160195.	1.5	24
12	Selectivity in glycosaminoglycan binding dictates the distribution and diffusion of fibroblast growth factors in the pericellular matrix. Open Biology, 2016, 6, 150277.	1.5	22
13	Preventing Plasmon Coupling between Gold Nanorods Improves the Sensitivity of Photoacoustic Detection of Labeled Stem Cells <i>in Vivo</i> . ACS Nano, 2016, 10, 7106-7116.	7.3	78
14	Dispersion of Hydrophobic Co Supracrystal in Aqueous Solution. ACS Nano, 2016, 10, 2277-2286.	7.3	16
15	Measures of kidney function by minimally invasive techniques correlate with histological glomerular damage in SCID mice with adriamycin-induced nephropathy. Scientific Reports, 2015, 5, 13601.	1.6	51
16	Tailoring the surface charge of dextran-based polymer coated SPIONs for modulated stem cell uptake and MRI contrast. Biomaterials Science, 2015, 3, 608-616.	2.6	44
17	Cellular memory of hypoxia elicits neuroblastoma metastasis and enables invasion by non-aggressive neighbouring cells. Oncogenesis, 2015, 4, e138-e138.	2.1	45
18	Photothermal raster image correlation spectroscopy of gold nanoparticles in solution and on live cells. Royal Society Open Science, 2015, 2, 140454.	1.1	21

Raphael Levy

#	Article	IF	CITATIONS
19	TAT and HA2 Facilitate Cellular Uptake of Gold Nanoparticles but Do Not Lead to Cytosolic Localisation. PLoS ONE, 2015, 10, e0121683.	1.1	26
20	The spherical nucleic acids mRNA detection paradox. ScienceOpen Research, 2015, .	0.6	4
21	Critical Assessment of the Evidence for Striped Nanoparticles. PLoS ONE, 2014, 9, e108482.	1.1	41
22	Nanoparticles for Imaging, Sensing, and Therapeutic Intervention. ACS Nano, 2014, 8, 3107-3122.	7.3	255
23	Monovalent maleimide functionalization of gold nanoparticles <i>via</i> copper-free click chemistry. Chemical Communications, 2014, 50, 13157-13160.	2.2	22
24	Response of Villin Headpiece-Capped Gold Nanoparticles to Ultrafast Laser Heating. Journal of Physical Chemistry B, 2014, 118, 7954-7962.	1.2	26
25	High-Resolution Sizing of Monolayer-Protected Gold Clusters by Differential Centrifugal Sedimentation. ACS Nano, 2013, 7, 8881-8890.	7.3	71
26	Photothermal Microscopy of the Core of Dextran-Coated Iron Oxide Nanoparticles During Cell Uptake. ACS Nano, 2012, 6, 5961-5971.	7.3	53
27	Stripy Nanoparticles Revisited. Small, 2012, 8, 3714-3719.	5.2	44
28	Long-term tracking of cells using inorganic nanoparticles as contrast agents: are we there yet?. Chemical Society Reviews, 2012, 41, 2707.	18.7	157
29	Fmoc-diphenylalanine hydrogels: understanding the variability in reported mechanical properties. Soft Matter, 2012, 8, 1168-1174.	1.2	155
30	Amyloid-Derived Peptide Forms Self-Assembled Monolayers on Gold Nanoparticle with a Curvature-Dependent Î ² -Sheet Structure. ACS Nano, 2012, 6, 1416-1426.	7.3	84
31	Editorial. Advanced Drug Delivery Reviews, 2012, 64, 127-128.	6.6	0
32	Gold nanoparticles as advanced building blocks for nanoscale self-assembled systems. Journal of Materials Chemistry, 2011, 21, 12181.	6.7	44
33	Gold nanoparticles delivery in mammalian live cells: a critical review. Nano Reviews, 2010, 1, 4889.	3.7	169
34	Cathepsin L Digestion of Nanobioconjugates upon Endocytosis. ACS Nano, 2009, 3, 2461-2468.	7.3	110
35	PEGylation modulates the interfacial kinetics of proteases on peptide-capped gold nanoparticles. Chemical Communications, 2009, , 5009.	2.2	43
36	Supramolecular Domains in Mixed Peptide Selfâ€Assembled Monolayers on Gold Nanoparticles. ChemBioChem, 2008, 9, 2127-2134.	1.3	42

Raphael Levy

#	Article	IF	CITATIONS
37	Fluorescent or not? Size-dependent fluorescence switching for polymer-stabilized gold clusters in the 1.1–1.7 nm size range. Chemical Communications, 2008, , 3986.	2.2	108
38	Drying nano particles solution on an oscillating tip at an air liquid interface: what we can learn, what we can do. Nanoscale Research Letters, 2007, 2, 309-318.	3.1	9
39	Kinase-Catalyzed Modification of Gold Nanoparticles:Â A New Approach to Colorimetric Kinase Activity Screening. Journal of the American Chemical Society, 2006, 128, 2214-2215.	6.6	269
40	Protein–GAG interactions: new surface-based techniques, spectroscopies and nanotechnology probes. Biochemical Society Transactions, 2006, 34, 427-430.	1.6	38
41	A Generic Approach to Monofunctionalized Protein-Like Gold Nanoparticles Based on Immobilized Metal Ion Affinity Chromatography. ChemBioChem, 2006, 7, 592-594.	1.3	64
42	Peptide-Capped Gold Nanoparticles: Towards Artificial Proteins. ChemBioChem, 2006, 7, 1141-1145.	1.3	93
43	Specific molecular interactions by force spectroscopy: From single bonds to collective properties. Biophysical Chemistry, 2005, 117, 233-237.	1.5	11
44	New tools for force spectroscopy. Ultramicroscopy, 2005, 102, 311-315.	0.8	8
45	The Peptide Route to Multifunctional Gold Nanoparticles. Bioconjugate Chemistry, 2005, 16, 497-500.	1.8	102
46	Probing adsorbed polymer chains using atomic force microscopy: interpretation of rupture distributions. Journal of Physics Condensed Matter, 2004, 16, 7199-7208.	0.7	9
47	Nanoscale science: a big step towards the Holy Grail of single molecule biochemistry and molecular biology. Cellular and Molecular Life Sciences, 2004, 61, 1843-1849.	2.4	15
48	Rational and Combinatorial Design of Peptide Capping Ligands for Gold Nanoparticles. Journal of the American Chemical Society, 2004, 126, 10076-10084.	6.6	670
49	Measuring the spring constant of atomic force microscope cantilevers: thermal fluctuations and other methods. Nanotechnology, 2002, 13, 33-37.	1.3	324
50	The Spherical Nucleic Acids mRNA Detection Paradox. ScienceOpen Research, 0, , .	0.6	5