Neil C Henderson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3483833/publications.pdf

Version: 2024-02-01

76 papers 9,365 citations

36 h-index 75 g-index

92 all docs 92 docs citations

92 times ranked 13001 citing authors

#	Article	IF	CITATIONS
1	Deciphering Mesenchymal Drivers of Human Dupuytren's Disease at Single-Cell Level. Journal of Investigative Dermatology, 2022, 142, 114-123.e8.	0.7	12
2	Single-cell RNA sequencing profiling of mouse endothelial cells in response to pulmonary arterial hypertension. Cardiovascular Research, 2022, 118, 2519-2534.	3.8	45
3	Differential abundance testing on single-cell data using k-nearest neighbor graphs. Nature Biotechnology, 2022, 40, 245-253.	17.5	229
4	Genomeâ€Wide Association Study of NAFLD Using Electronic Health Records. Hepatology Communications, 2022, 6, 297-308.	4. 3	33
5	Genomeâ€wide analysis identifies gallstoneâ€susceptibility loci including genes regulating gastrointestinal motility. Hepatology, 2022, 75, 1081-1094.	7.3	12
6	Comparative Studies of Renin-Null Zebrafish and Mice Provide New Functional Insights. Hypertension, 2022, 79, HYPERTENSIONAHA12118600.	2.7	4
7	Mapping the developing human cardiac endothelium at single-cell resolution identifies MECOM as a regulator of arteriovenous gene expression. Cardiovascular Research, 2022, 118, 2960-2972.	3.8	24
8	Liver zonation, revisited. Hepatology, 2022, 76, 1219-1230.	7.3	49
9	The purinergic P2Y14 receptor links hepatocyte death to hepatic stellate cell activation and fibrogenesis in the liver. Science Translational Medicine, 2022, 14, eabe5795.	12.4	25
10	Understanding the cellular interactome of non-alcoholic fatty liver disease. JHEP Reports, 2022, 4, 100524.	4.9	35
11	Hepatic Stellate Cell Regulation of Liver Regeneration and Repair. Hepatology Communications, 2021, 5, 358-370.	4.3	49
12	Singleâ€cell RNA sequencing redefines the mesenchymal cell landscape of mouse endometrium. FASEB Journal, 2021, 35, e21285.	0.5	48
13	SOX9 is required for kidney fibrosis and activates NAV3 to drive renal myofibroblast function. Science Signaling, 2021, 14, .	3.6	22
14	MIR503HG Loss Promotes Endothelial-to-Mesenchymal Transition in Vascular Disease. Circulation Research, 2021, 128, 1173-1190.	4.5	41
15	scRNA Transcription Profile of Adult Zebrafish Podocytes Using a Novel Reporter Strain. Cellular Physiology and Biochemistry, 2021, 55, 35-47.	1.6	3
16	A unique macrophage subpopulation signals directly to progenitor cells to promote regenerative neurogenesis in the zebrafish spinal cord. Developmental Cell, 2021, 56, 1617-1630.e6.	7.0	44
17	Single-nucleus RNA-seq2 reveals functional crosstalk between liver zonation and ploidy. Nature Communications, 2021, 12, 4264.	12.8	46
18	Role of Tim4 in the regulation of ABCA1+ adipose tissue macrophages and post-prandial cholesterol levels. Nature Communications, 2021, 12, 4434.	12.8	27

#	Article	IF	CITATIONS
19	Dynamic cell contacts between periportal mesenchyme and ductal epithelium act as a rheostat for liver cell proliferation. Cell Stem Cell, 2021, 28, 1907-1921.e8.	11.1	30
20	Decoding myofibroblast origins in human kidney fibrosis. Nature, 2021, 589, 281-286.	27.8	380
21	Kidney Single-Cell Atlas Reveals Myeloid Heterogeneity in Progression and Regression of Kidney Disease. Journal of the American Society of Nephrology: JASN, 2020, 31, 2833-2854.	6.1	113
22	Transfer of hepatocellular microRNA regulates cytochrome P450 2E1 in renal tubular cells. EBioMedicine, 2020, 62, 103092.	6.1	11
23	Fibrosis: from mechanisms to medicines. Nature, 2020, 587, 555-566.	27.8	746
24	Single-cell RNA-seq reveals CD16- monocytes as key regulators of human monocyte transcriptional response to Toxoplasma. Scientific Reports, 2020, 10, 21047.	3.3	8
25	OP9â€Single Cell RNA-sequencing reveals novel targets with a potential role in vascular regeneration in the ischaemic adult heart. , 2020, , .		0
26	Single-cell technologies in hepatology: new insights into liver biology and disease pathogenesis. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 457-472.	17.8	152
27	Cancer Burden Is Controlled by Mural Cell- \hat{l}^2 3-Integrin Regulated Crosstalk with Tumor Cells. Cell, 2020, 181, 1346-1363.e21.	28.9	53
28	Pericyte FAK negatively regulates Gas6/Axl signalling to suppress tumour angiogenesis and tumour growth. Nature Communications, 2020, 11, 2810.	12.8	34
29	Single-cell genomics and spatial transcriptomics: Discovery of novel cell states and cellular interactions in liver physiology and diseaseÂbiology. Journal of Hepatology, 2020, 73, 1219-1230.	3.7	156
30	Single-cell analyses and machine learning define hematopoietic progenitor and HSC-like cells derived from human PSCs. Blood, 2020, 136, 2893-2904.	1.4	44
31	Collagen-producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis. Nature Communications, 2020, 11, 1920.	12.8	346
32	Stromal Cells Covering Omental Fat-Associated Lymphoid Clusters Trigger Formation of Neutrophil Aggregates to Capture Peritoneal Contaminants. Immunity, 2020, 52, 700-715.e6.	14.3	53
33	Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature, 2019, 575, 512-518.	27.8	946
34	Unravelling fibrosis using single-cell transcriptomics. Current Opinion in Pharmacology, 2019, 49, 71-75.	3.5	8
35	Single-Cell Transcriptomics Uncovers Zonation of Function in the Mesenchyme during Liver Fibrosis. Cell Reports, 2019, 29, 1832-1847.e8.	6.4	261
36	Mice depleted for Exchange Proteins Directly Activated by cAMP (Epac) exhibit irregular liver regeneration in response to partial hepatectomy. Scientific Reports, 2019, 9, 13789.	3.3	8

3

#	Article	IF	Citations
37	An Orally Active Galectin-3 Antagonist Inhibits Lung Adenocarcinoma Growth and Augments Response to PD-L1 Blockade. Cancer Research, 2019, 79, 1480-1492.	0.9	87
38	Fibroblastâ€specific integrinâ€alpha V differentially regulates type 17 and type 2 driven inflammation and fibrosis. Journal of Pathology, 2019, 248, 16-29.	4.5	15
39	Single-cell transcriptome analyses reveal novel targets modulating cardiac neovascularization by resident endothelial cells following myocardial infarction. European Heart Journal, 2019, 40, 2507-2520.	2.2	149
40	A Macrophage-Pericyte Axis Directs Tissue Restoration via Amphiregulin-Induced Transforming Growth Factor Beta Activation. Immunity, 2019, 50, 645-654.e6.	14.3	141
41	Development of mouse models of angiosarcoma driven by p53. DMM Disease Models and Mechanisms, 2019, 12, .	2.4	12
42	Loss of Integrin $\hat{l}\pm\hat{vl^2}8$ in Murine Hepatocytes Accelerates Liver Regeneration. American Journal of Pathology, 2019, 189, 258-271.	3.8	10
43	The STAT3–IL-10–IL-6 Pathway Is a Novel Regulator of Macrophage Efferocytosis and Phenotypic Conversion in Sterile Liver Injury. Journal of Immunology, 2018, 200, 1169-1187.	0.8	74
44	Immune cell regulation of liver regeneration and repair. Journal of Immunology and Regenerative Medicine, 2018, 2, 1-10.	0.4	13
45	Low-dose acetaminophen induces early disruption of cell-cell tight junctions in human hepatic cells and mouse liver. Scientific Reports, 2017, 7, 37541.	3.3	29
46	Longitudinal in vivo bioimaging of hepatocyte transcription factor activity following cholestatic liver injury in mice. Scientific Reports, 2017, 7, 41874.	3.3	9
47	Sphingosine-1-Phosphate Prevents Egress of Hematopoietic Stem Cells From Liver to Reduce Fibrosis. Gastroenterology, 2017, 153, 233-248.e16.	1.3	48
48	$\hat{l}_{\pm\nu}$ integrins on mesenchymal cells regulate skeletal and cardiac muscle fibrosis. Nature Communications, 2017, 8, 1118.	12.8	81
49	Skeletal and cardiac muscle pericytes: Functions and therapeutic potential. , 2017, 171, 65-74.		80
50	Galectin-3, histone deacetylases, and Hedgehog signaling: Possible convergent targets in schistosomiasis-induced liver fibrosis. PLoS Neglected Tropical Diseases, 2017, 11, e0005137.	3.0	22
51	Antifibrotics in chronic liver disease: tractable targets and translational challenges. The Lancet Gastroenterology and Hepatology, 2016, 1, 328-340.	8.1	36
52	$\hat{l}_{\pm \nu}$ integrins: key regulators of tissue fibrosis. Cell and Tissue Research, 2016, 365, 511-519.	2.9	112
53	Mesenchymal stromal cells and liver fibrosis: a complicated relationship. FASEB Journal, 2016, 30, 3905-3928.	0.5	67
54	PAK proteins and YAP-1 signalling downstream of integrin beta-1 in myofibroblasts promote liver fibrosis. Nature Communications, 2016, 7, 12502.	12.8	162

#	Article	IF	CITATIONS
55	Recent progress on targeting the $\hat{l}\pm\hat{vl}^21$ integrin for the treatment of tissue fibrosis. Expert Opinion on Drug Discovery, 2016, 11, 749-751.	5.0	1
56	Homing in on the hepatic scar: recent advances in cell-specific targeting of liver fibrosis. F1000Research, 2016, 5, 1749.	1.6	16
57	Comprehensive microRNA profiling in acetaminophen toxicity identifies novel circulating biomarkers for human liver and kidney injury. Scientific Reports, 2015, 5, 15501.	3.3	114
58	PDGF-Mediated Regulation of Liver Fibrosis. Current Pathobiology Reports, 2015, 3, 225-233.	3.4	1
59	Healing scars: targeting pericytes to treat fibrosis. QJM - Monthly Journal of the Association of Physicians, 2015, 108, 3-7.	0.5	42
60	Hepatic stellate cells: central modulators of hepatic carcinogenesis. BMC Gastroenterology, 2015, 15, 63.	2.0	85
61	Creâ€ativity in the liver: Transgenic approaches to targeting hepatic nonparenchymal cells. Hepatology, 2015, 61, 2091-2099.	7.3	27
62	Galectin-3 regulates hepatic progenitor cell expansion during liver injury. Gut, 2015, 64, 312-321.	12.1	48
63	Acute Liver Injury Is Independent of B Cells or Immunoglobulin M. PLoS ONE, 2015, 10, e0138688.	2.5	8
64	Targeting of $\hat{l}\pm\nu$ integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nature Medicine, 2013, 19, 1617-1624.	30.7	737
65	Integrin-mediated regulation of $TGF\hat{l}^2$ in fibrosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 891-896.	3.8	163
66	Extracellular matrix degradation in liver fibrosis: Biochemistry and regulation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 876-883.	3.8	196
67	Eosinophils secrete IL-4 to facilitate liver regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9914-9919.	7.1	228
68	Origins of fibrosis: pericytes take centre stage. F1000prime Reports, 2013, 5, 37.	5.9	71
69	Standing Down the Guard: Stellate Cells Leave Quietly. Gastroenterology, 2012, 143, 890-892.	1.3	7
70	The regulation of inflammation by galectinâ€3. Immunological Reviews, 2009, 230, 160-171.	6.0	439
71	Hepatic fibrogenesis: From within and outwith. Toxicology, 2008, 254, 130-135.	4.2	53
72	Galectin-3 Expression and Secretion Links Macrophages to the Promotion of Renal Fibrosis. American Journal of Pathology, 2008, 172, 288-298.	3.8	460

#	Article	IF	CITATIONS
73	Regulation of Alternative Macrophage Activation by Galectin-3. Journal of Immunology, 2008, 180, 2650-2658.	0.8	447
74	Critical role of c-jun (NH2) terminal kinase in paracetamol- induced acute liver failure. Gut, 2007, 56, 982-990.	12.1	164
75	Liver fibrosis: cellular mechanisms of progression and resolution. Clinical Science, 2007, 112, 265-280.	4.3	237
76	Galectin-3 regulates myofibroblast activation and hepatic fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5060-5065.	7.1	539