
Paul R Reynolds

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3483724/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Overexpression of bone morphogenetic protein receptor type 2 suppresses transforming growth factor β-induced profibrotic responses in lung fibroblasts. Experimental Lung Research, 2022, 48, 35-51.	1.2	1
2	COPD is associated with increased pro-inflammatory CD28null CD8 T and NKT-like cells in the small airways. Clinical and Experimental Immunology, 2022, 207, 351-359.	2.6	4
3	Establishing CREATE: lessons learned in setting up a training environment for early-career researchers in respiratory medicine. BMC Medical Education, 2022, 22, 136.	2.4	1
4	Deep Learning–based Outcome Prediction in Progressive Fibrotic Lung Disease Using High-Resolution Computed Tomography. American Journal of Respiratory and Critical Care Medicine, 2022, 206, 883-891.	5.6	29
5	Immunolocalization of zinc transporters and metallothioneins reveals links to microvascular morphology and functions. Histochemistry and Cell Biology, 2022, 158, 485-496.	1.7	4
6	The cost-effectiveness of azithromycin in reducing exacerbations in uncontrolled asthma. European Respiratory Journal, 2021, 57, 2002436.	6.7	4
7	Diagnosis and management of connective tissue diseaseâ€associated interstitial lung disease in Australia and New Zealand: A position statement from the Thoracic Society of Australia and New Zealand*. Respirology, 2021, 26, 23-51.	2.3	45
8	Add-on azithromycin reduces sputum cytokines in non-eosinophilic asthma: an AMAZES substudy. Thorax, 2021, 76, 733-736.	5.6	16
9	Mepolizumab and Oral Corticosteroid Stewardship: Data from the Australian Mepolizumab Registry. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 2715-2724.e5.	3.8	15
10	Sputum TNF markers are increased in neutrophilic and severe asthma and are reduced by azithromycin treatment. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 2090-2101.	5.7	27
11	Dysregulated zinc and sphingosineâ€1â€phosphate signaling in pulmonary hypertension: Potential effects by targeting of bone morphogenetic protein receptor type 2 in pulmonary microvessels. Cell Biology International, 2021, 45, 2368-2379.	3.0	7
12	TELO-SCOPE study: a randomised, double-blind, placebo-controlled, phase 2 trial of danazol for short telomere related pulmonary fibrosis. BMJ Open Respiratory Research, 2021, 8, e001127.	3.0	13
13	Effects of E•igarette Eâ€ŀiquid components on bronchial epithelial cells: Demonstration of dysfunctional efferocytosis. Respirology, 2020, 25, 620-628.	2.3	27
14	Occupational and environmental risk factors for idiopathic pulmonary fibrosis in Australia: case–control study. Thorax, 2020, 75, 864-869.	5.6	48
15	Mepolizumab effectiveness and identification of super-responders in severe asthma. European Respiratory Journal, 2020, 55, 1902420.	6.7	124
16	<copd-related airway="" epithelium="" intracellular="" modification="" of<br="" permits="" residence="" the="" to="">Nontypeable Haemophilus influenzae and May Be Potentiated by Macrolide Arrest of Autophagy. International Journal of COPD, 2020, Volume 15, 1253-1260.</copd-related>	2.3	3
17	Twentyâ€five years of <i>Respirology</i> : From the Editors. Respirology, 2020, 25, 6-6.	2.3	0
18	Lymphocyte senescence in COPD is associated with decreased sirtuin 1 expression in steroid resistant pro-inflammatory lymphocytes. Therapeutic Advances in Respiratory Disease, 2020, 14, 175346662090528.	2.6	14

PAUL R REYNOLDS

#	Article	IF	CITATIONS
19	Gastroesophageal reflux and antacid therapy in IPF: analysis from the Australia IPF Registry. BMC Pulmonary Medicine, 2019, 19, 84.	2.0	26
20	Long-Term Azithromycin Reduces <i>Haemophilus influenzae</i> and Increases Antibiotic Resistance in Severe Asthma. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 309-317.	5.6	121
21	BMPR2â€expressing bone marrowâ€derived endothelialâ€like progenitor cells alleviate pulmonary arterial hypertension in vivo. Respirology, 2019, 24, 1095-1103.	2.3	24
22	Eligibility for antiâ€fibrotic treatment in idiopathic pulmonary fibrosis depends on the predictive equation used for pulmonary function testing. Respirology, 2019, 24, 988-995.	2.3	7
23	A sputum 6-gene signature predicts future exacerbations of poorly controlled asthma. Journal of Allergy and Clinical Immunology, 2019, 144, 51-60.e11.	2.9	50
24	Efficacy of azithromycin in severe asthma from the AMAZES randomised trial. ERJ Open Research, 2019, 5, 00056-2019.	2.6	27
25	Control of Confounding and Reporting of Results in Causal Inference Studies. Guidance for Authors from Editors of Respiratory, Sleep, and Critical Care Journals. Annals of the American Thoracic Society, 2019, 16, 22-28.	3.2	458
26	Pulmonary arterial hypertension: In Asia, as elsewhere, still a lethal disease despite modern treatment. Respirology, 2019, 24, 99-100.	2.3	1
27	Nurturing Respirology. Respirology, 2019, 24, 92-92.	2.3	1
28	Implications of the diagnostic criteria of idiopathic pulmonary fibrosis in clinical practice: Analysis from the Australian Idiopathic Pulmonary Fibrosis Registry. Respirology, 2019, 24, 361-368.	2.3	24
29	Inflammatory phenotypes in patients with severe asthma are associated with distinct airway microbiology. Journal of Allergy and Clinical Immunology, 2018, 141, 94-103.e15.	2.9	233
30	Airway epithelial cells exposed to wildfire smoke extract exhibit dysregulated autophagy and barrier dysfunction consistent with COPD. Respiratory Research, 2018, 19, 234.	3.6	34
31	Diagnosis and management of idiopathic pulmonary fibrosis: Thoracic Society of Australia and New Zealand and Lung Foundation Australia position statements summary. Medical Journal of Australia, 2018, 208, 82-88.	1.7	13
32	Disease progression in idiopathic pulmonary fibrosis with mild physiological impairment: analysis from the Australian IPF registry. BMC Pulmonary Medicine, 2018, 18, 19.	2.0	58
33	<i>Respirology</i> and the Asiaâ€Pacific Century. Respirology, 2017, 22, 7-8.	2.3	Ο
34	Baseline characteristics of idiopathic pulmonary fibrosis: analysis from the Australian Idiopathic Pulmonary Fibrosis Registry. European Respiratory Journal, 2017, 49, 1601592.	6.7	174
35	Healthâ€related quality of life in idiopathic pulmonary fibrosis: Data from the <scp>A</scp> ustralian <scp>IPF R</scp> egistry. Respirology, 2017, 22, 950-956.	2.3	85
36	The uncoupling of autophagy and zinc homeostasis in airway epithelial cells as a fundamental contributor to COPD. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313, L453-L465.	2.9	27

PAUL R REYNOLDS

#	Article	IF	CITATIONS
37	Nonantibiotic macrolides restore airway macrophage phagocytic function with potential anti-inflammatory effects in chronic lung diseases. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 312, L678-L687.	2.9	46
38	Determinants and outcomes of prolonged anxiety and depression in idiopathic pulmonary fibrosis. European Respiratory Journal, 2017, 50, 1700168.	6.7	32
39	Treatment of idiopathic pulmonary fibrosis in <scp>A</scp> ustralia and <scp>N</scp> ew Zealand: <scp>A</scp> position statement from the <scp>T</scp> horacic <scp>S</scp> ociety of <scp>A</scp> ustralia and <scp>N</scp> ew <scp>Z</scp> ealand and the <scp>L</scp> ung <scp>F</scp> oundation <scp>A</scp> ustralia. Respirology. 2017. 22. 1436-1458.	2.3	39
40	Phagocytosis and Inflammation: Exploring the effects of the components of E-cigarette vapor on macrophages. Physiological Reports, 2017, 5, e13370.	1.7	65
41	Effect of azithromycin on asthma exacerbations and quality of life in adults with persistent uncontrolled asthma (AMAZES): a randomised, double-blind, placebo-controlled trial. Lancet, The, 2017, 390, 659-668.	13.7	489
42	Disrupted epithelial/macrophage crosstalk via Spinster homologue 2-mediated S1P signaling may drive defective macrophage phagocytic function in COPD. PLoS ONE, 2017, 12, e0179577.	2.5	23
43	<scp>BMPR</scp> 2 gene therapy for <scp>PAH</scp> acts via <scp>S</scp> mad and nonâ€ <scp>S</scp> mad signalling. Respirology, 2016, 21, 727-733.	2.3	32
44	<scp>BMPR</scp> 2 gene delivery reduces mutationâ€related <scp>PAH</scp> and counteracts TGFâ€Î²â€mediated pulmonary cell signalling. Respirology, 2016, 21, 526-532.	2.3	33
45	Steroid resistance in COPD is associated with impaired molecular chaperone Hsp90 expression by pro-inflammatory lymphocytes. Respiratory Research, 2016, 17, 135.	3.6	28
46	Periostin levels and eosinophilic inflammation in poorly-controlled asthma. BMC Pulmonary Medicine, 2016, 16, 67.	2.0	55
47	Cigarette smoke inhibits efferocytosis via deregulation of sphingosine kinase signaling: reversal with exogenous S1P and the S1P analogue FTY720. Journal of Leukocyte Biology, 2016, 100, 195-202.	3.3	29
48	Airway dysbiosis: <i>Haemophilus influenzae</i> and <i>Tropheryma</i> in poorly controlled asthma. European Respiratory Journal, 2016, 47, 792-800.	6.7	159
49	Reduced Antiviral Interferon Production in Poorly Controlled Asthma Is Associated With Neutrophilic Inflammation and High-Dose Inhaled Corticosteroids. Chest, 2016, 149, 704-713.	0.8	64
50	A small volume technique to examine and compare alveolar macrophage phagocytosis of apoptotic cells and non typeable Haemophilus influenzae (NTHi). Journal of Immunological Methods, 2016, 429, 7-14.	1.4	16
51	Lymphocyte senescence in COPD is associated with decreased histone deacetylase 2 expression by pro-inflammatory lymphocytes. Respiratory Research, 2015, 16, 130.	3.6	30
52	Anti-inflammatory deficiencies in neutrophilic asthma: reduced galectin-3 and IL-1RA/IL-1β. Respiratory Research, 2015, 16, 5.	3.6	66
53	Lymphocyte senescence in COPD is associated with loss of glucocorticoid receptor expression by pro-inflammatory/cytotoxic lymphocytes. Respiratory Research, 2015, 16, 2.	3.6	32
54	Altered sputum granzyme <scp>B</scp> and granzyme <scp>B</scp> /proteinase inhibitorâ€9 in patients with nonâ€eosinophilic asthma. Respirology, 2014, 19, 280-287.	2.3	9

PAUL R REYNOLDS

#	Article	IF	CITATIONS
55	Loss of glucocorticoid receptor from pro-inflammatory T cells after lung transplant. Journal of Heart and Lung Transplantation, 2014, 33, 957-962.	0.6	7
56	Oxidative Stress Decreases Functional Airway Mannose Binding Lectin in COPD. PLoS ONE, 2014, 9, e98571.	2.5	30
57	Lowâ€dose azithromycin improves phagocytosis of bacteria by both alveolar and monocyteâ€derived macrophagesin chronic obstructive pulmonary disease subjects. Respirology, 2012, 17, 802-807.	2.3	71
58	Viruses in Pharmaceutical Research: Pulmonary Vascular Disease. Molecular Pharmaceutics, 2011, 8, 56-64.	4.6	2
59	Decreased efferocytosis and mannose binding lectin in the airway in bronchiolitis obliterans syndrome. Journal of Heart and Lung Transplantation, 2011, 30, 589-595.	0.6	25
60	Crossâ€border patients with tuberculosis. Medical Journal of Australia, 2011, 195, 523-524.	1.7	6
61	Gene therapy for pulmonary hypertension: prospects and challenges. Expert Opinion on Biological Therapy, 2011, 11, 133-143.	3.1	20
62	Bone morphogenetic protein type 2 receptor gene therapy attenuates hypoxic pulmonary hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 292, L1182-L1192.	2.9	128
63	Smoking Alters Alveolar Macrophage Recognition and Phagocytic Ability. American Journal of Respiratory Cell and Molecular Biology, 2007, 37, 748-755.	2.9	305
64	Delivery of DNA to Pulmonary Endothelium Using Adenoviral Vectors. , 2004, 246, 69-90.		1
65	Alveolar macrophages from subjects with chronic obstructive pulmonary disease are deficient in their ability to phagocytose apoptotic airway epithelial cells. Immunology and Cell Biology, 2003, 81, 289-296.	2.3	369
66	Tachykinin-induced bronchoconstriction in sheep is NK-1 receptor mediated and exhibits tachyphylaxis. Respirology, 2001, 6, 113-123.	2.3	6
67	Pre-protachykinin-A mRNA is increased in the airway epithelium of smokers with chronic bronchitis. Respirology, 2001, 6, 187-197.	2.3	9
68	Combined transductional and transcriptional targeting improves the specificity of transgene expression in vivo. Nature Biotechnology, 2001, 19, 838-842.	17.5	219
69	Midkine and cyclooxygenase-2 promoters are promising for adenoviral vector gene delivery of pancreatic carcinoma. Cancer Gene Therapy, 2001, 8, 990-996.	4.6	47
70	A Targetable, Injectable Adenoviral Vector for Selective Gene Delivery to Pulmonary Endothelium in Vivo. Molecular Therapy, 2000, 2, 562-578.	8.2	203
71	Viral vectors show promise in Colorado. Nature Biotechnology, 1998, 16, 422-423.	17.5	0
72	Tachykinins contribute to the acute airways response to allergen in sheep actively sensitized to Ascaris suum. Respirology, 1997, 2, 193-200.	2.3	6

#	Article	IF	CITATIONS
73	ROLE OF TACHYKININS IN BRONCHIAL HYPER-RESPONSIVENESS Clinical and Experimental Pharmacology and Physiology, 1997, 24, 273-280.	1.9	33