List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3483564/publications.pdf

Version: 2024-02-01

#	Article	lF	CITATIONS
1	Current status and future prospects of biological routes to bio-based products using raw materials, wastes, and residues as renewable resources. Critical Reviews in Environmental Science and Technology, 2022, 52, 2453-2509.	6.6	19
2	Disordered development of gut microbiome interferes with the establishment of the gut ecosystem during early childhood with atopic dermatitis. Gut Microbes, 2022, 14, 2068366.	4.3	20
3	Diet-Induced Host–Microbe Interactions: Personalized Diet Strategies for Improving Inflammatory Bowel Disease. Current Developments in Nutrition, 2022, 6, nzac110.	0.1	7
4	A Genomics-Based Semirational Approach for Expanding the Postbiotic Potential of Collagen Peptides Using Lactobacillaceae. Journal of Agricultural and Food Chemistry, 2022, 70, 8365-8376.	2.4	4
5	Structure of oxidized pyrrolidone carboxypeptidase from Fervidobacterium islandicum AW-1 reveals unique structural features for thermostability and keratinolysis. Biochemical and Biophysical Research Communications, 2021, 540, 101-107.	1.0	3
6	Editorial: Interactions Between Small Molecule Ligands and Target Enzymes. Frontiers in Molecular Biosciences, 2021, 8, 649450.	1.6	1
7	A largeâ€scale metagenomic study for enzyme profiles using the focused identification of the NGSâ€based definitive enzyme research (FINDER) strategy. Biotechnology and Bioengineering, 2021, 118, 4360-4374.	1.7	6
8	Nutrientâ€specific Proteomic Analysis of the Mucin Degrading Bacterium Akkermansia muciniphila. Proteomics, 2021, , 2100125.	1.3	3
9	The sulfur formation system mediating extracellular cysteineâ€cystine recycling in Fervidobacterium islandicum AWâ€l is associated with keratin degradation. Microbial Biotechnology, 2021, 14, 938-952.	2.0	4
10	Cover Image, Volume 118, Number 11, November 2021. Biotechnology and Bioengineering, 2021, 118, i.	1.7	0
11	New approaches towards the discovery and evaluation of bioactive peptides from natural resources. Critical Reviews in Environmental Science and Technology, 2020, 50, 72-103.	6.6	28
12	Identification of keratinases from <i>Fervidobacterium islandicum</i> AWâ€4 using dynamic gene expression profiling. Microbial Biotechnology, 2020, 13, 442-457.	2.0	23
13	Su1709 ESCHERICHIA COLI AS A MODEL SYSTEM TO STUDY THE MITOCHONDRIAL MUTATIONS IN BILIARY ATRESIA. Gastroenterology, 2020, 158, S-1390-S-1391.	0.6	0
14	Lactobacillus acidophilus Antimicrobial Peptide Is Antagonistic to Aeromonas hydrophila. Frontiers in Microbiology, 2020, 11, 570851.	1.5	4
15	Functional Characterization of Primordial Protein Repair Enzyme M38 Metallo-Peptidase From Fervidobacterium islandicum AW-1. Frontiers in Molecular Biosciences, 2020, 7, 600634.	1.6	2
16	Tu1912 NUTRIENT-DEPENDENT PHYSIOLOGICAL AND PROTEOMIC ANALYSIS OF MUCIN DEGRADING BACTERIA REVEALS METABOLIC INSIGHT INTO MUCOSA-ASSOCIATED MICROBIOTA IN THE HUMAN GUT. Gastroenterology, 2020, 158, S-1216.	0.6	0
17	Minimization of energy transduction confers resistance to phosphine in the rice weevil, Sitophilus oryzae. Scientific Reports, 2019, 9, 14605.	1.6	12
18	A Robust Longitudinal Co-culture of Obligate Anaerobic Gut Microbiome With Human Intestinal Epithelium in an Anoxic-Oxic Interface-on-a-Chip. Frontiers in Bioengineering and Biotechnology, 2019, 7, 13.	2.0	113

#	Article	IF	CITATIONS
19	Fluorescence-based Quantification of Bioactive Keratin Peptides from Feathers for Optimizing Large-scale Anaerobic Fermentation and Purification. Biotechnology and Bioprocess Engineering, 2019, 24, 240-249.	1.4	7
20	Low-molecular weight keratins with anti-skin aging activity produced by anaerobic digestion of poultry feathers with Fervidobacterium islandicum AW-1. Journal of Biotechnology, 2018, 271, 17-25.	1.9	34
21	Mitochondrial Mutations in Cholestatic Liver Disease with Biliary Atresia. Scientific Reports, 2018, 8, 905.	1.6	29
22	ldentification of Matrix Metalloproteinase-1-Suppressive Peptides in Feather Keratin Hydrolysate. Journal of Agricultural and Food Chemistry, 2018, 66, 12719-12729.	2.4	21
23	TM0416, a Hyperthermophilic Promiscuous Nonphosphorylated Sugar Isomerase, Catalyzes Various C 5 and C 6 Epimerization Reactions. Applied and Environmental Microbiology, 2017, 83, .	1.4	23
24	Complete genome sequence of the thermophilic bacterium Geobacillus subterraneus KCTC 3922 T as a potential denitrifier. Journal of Biotechnology, 2017, 251, 141-144.	1.9	8
25	Biological iron-sulfur storage in a thioferrate-protein nanoparticle. Nature Communications, 2017, 8, 16110.	5.8	20
26	Draft genome sequence of the halophilic Halobacillus mangrovi KTB 131 isolated from Topan salt of the Jeon-nam in Korea. Genomics Data, 2017, 14, 18-20.	1.3	2
27	Diversity of Extremely Halophilic Archaeal and Bacterial Communities from Commercial Salts. Frontiers in Microbiology, 2017, 8, 799.	1.5	29
28	Development of a keratinase activity assay using recombinant chicken feather keratin substrates. PLoS ONE, 2017, 12, e0172712.	1.1	46
29	Enzymatic Characteristics of a Highly Thermostable �ï;½-(1-4)-Glucanase from Fervidobacterium islandicum AW-1 (KCTC 4680). Journal of Microbiology and Biotechnology, 2017, 27, 271-276.	0.9	4
30	Structure of the thermophilic l-Arabinose isomerase from Geobacillus kaustophilus reveals metal-mediated intersubunit interactions for activity and thermostability. Archives of Biochemistry and Biophysics, 2016, 596, 51-62.	1.4	29
31	Draft genome sequence of the extremely halophilic Halorubrum sp. SAH-A6 isolated from rock salts of the Danakil depression, Ethiopia. Genomics Data, 2016, 10, 30-32.	1.3	5
32	Complete genome sequence of Bacillus oceanisediminis 2691, a reservoir of heavy-metal resistance genes. Marine Genomics, 2016, 30, 73-76.	0.4	20
33	Development of a highly specific and sensitive cadmium and lead microbial biosensor using synthetic CadC-T7 genetic circuitry. Biosensors and Bioelectronics, 2016, 79, 701-708.	5.3	66
34	Microbial Platform Cells for Synthetic Biology. , 2016, , 229-254.		1
35	The structural basis of substrate promiscuity in UDP-hexose 4-epimeraseÂfrom the hyperthermophilic Eubacterium Thermotoga maritima. Archives of Biochemistry and Biophysics, 2015, 585, 39-51.	1.4	13
36	Genome sequence of a native-feather degrading extremely thermophilic Eubacterium, Fervidobacterium islandicum AW-1. Standards in Genomic Sciences, 2015, 10, 71.	1.5	19

#	Article	IF	CITATIONS
37	Biohydrogen Production: Strategies to Improve Process Efficiency through Microbial Routes. International Journal of Molecular Sciences, 2015, 16, 8266-8293.	1.8	303
38	Complete genome sequence of a keratin-degrading bacterium Chryseobacterium gallinarum strain DSM 27622T isolated from chicken. Journal of Biotechnology, 2015, 211, 66-67.	1.9	10
39	Biochemical and structural characterization of a keratin-degrading M32 carboxypeptidase from Fervidobacterium islandicum AW-1. Biochemical and Biophysical Research Communications, 2015, 468, 927-933.	1.0	22
40	Production of γ-Aminobutyric Acid Using Immobilized Glutamate Decarboxylase from Lactobacillus plantarum. Microbiology and Biotechnology Letters, 2015, 43, 300-305.	0.2	10
41	Short-term differential adaptation to anaerobic stress via genomic mutations by Escherichia coli strains K-12 and B lacking alcohol dehydrogenase. Frontiers in Microbiology, 2014, 5, 476.	1.5	9
42	Crystallization and preliminary X-ray crystallographic analysis of <scp>L</scp> -arabinose isomerase from thermophilic <i>Geobacillus kaustophilus</i> . Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 108-112.	0.4	6
43	Characterization of Glutamate Decarboxylase from <i>Lactobacillus plantarum</i> and Its C-Terminal Function for the pH Dependence of Activity. Journal of Agricultural and Food Chemistry, 2014, 62, 12186-12193.	2.4	45
44	Functional Expression and Characterization of Codon Optimized Proteorhodopsin in Escherichia coli. New Biotechnology, 2014, 31, S162.	2.4	0
45	Structural insights into conserved <scp>l</scp> â€arabinose metabolic enzymes reveal the substrate binding site of a thermophilic <scp>l</scp> â€arabinose isomerase. FEBS Letters, 2014, 588, 1064-1070.	1.3	7
46	Genome-wide analysis of redox reactions reveals metabolic engineering targets for d-lactate overproduction in Escherichia coli. Metabolic Engineering, 2013, 18, 44-52.	3.6	33
47	Proteomic analysis of acetylation in thermophilic <i><scp>G</scp>eobacillus kaustophilus</i> . Proteomics, 2013, 13, 2278-2282.	1.3	63
48	Genome Sequence of the Vancomycin-Producing Amycolatopsis orientalis subsp. orientalis Strain KCTC 9412 T. Genome Announcements, 2013, 1, .	0.8	16
49	Genome Sequence of <i>Methanobrevibacter</i> sp. Strain JH1, Isolated from Rumen of Korean Native Cattle. Genome Announcements, 2013, 1, .	0.8	20
50	Genome Sequences of Amycolatopsis orientalis subsp. orientalis Strains DSM 43388 and DSM 46075. Genome Announcements, 2013, 1, .	0.8	5
51	Crystallization and preliminary X-ray crystallographic analysis of MxaJ, a component of the methanol-oxidizing system operon from the marine bacterium <i>Methylophaga aminisulfidivorans</i> MP ^T . Acta Crystallographica Section F: Structural Biology Communications. 2013. 69. 902-905.	0.7	3
52	Draft Genome Sequence of an Anaerobic and Extremophilic Bacterium, <i>Caldanaerobacter yonseiensis</i> , Isolated from a Geothermal Hot Stream. Genome Announcements, 2013, 1, .	0.8	7
53	Design and development of synthetic microbial platform cells for bioenergy. Frontiers in Microbiology, 2013, 4, 92.	1.5	37
54	Draft Genome Sequence of Bacillus endophyticus 2102. Journal of Bacteriology, 2012, 194, 5705-5706.	1.0	8

#	Article	IF	CITATIONS
55	Genome Sequence of Oscillibacter ruminantium Strain GH1, Isolated from Rumen of Korean Native Cattle. Journal of Bacteriology, 2012, 194, 6362-6362.	1.0	33
56	Draft Genome Sequence of the Thermophilic Bacterium Anoxybacillus kamchatkensis G10. Journal of Bacteriology, 2012, 194, 6684-6685.	1.0	15
57	Draft Genome Sequence of Virgibacillus halodenitrificans 1806. Journal of Bacteriology, 2012, 194, 6332-6333.	1.0	12
58	Draft Genome Sequence of Bacillus oceanisediminis 2691. Journal of Bacteriology, 2012, 194, 6351-6352.	1.0	8
59	Homologous Alkalophilic and Acidophilic <scp>l</scp> -Arabinose Isomerases Reveal Region-Specific Contributions to the pH Dependence of Activity and Stability. Applied and Environmental Microbiology, 2012, 78, 8813-8816.	1.4	16
60	Recent advances in cytochrome <i>bc</i> ₁ : Inter monomer electronic communication?. FEBS Letters, 2012, 586, 617-621.	1.3	19
61	Creation of Metal-Independent Hyperthermophilicl-Arabinose Isomerase by Homologous Recombination. Journal of Agricultural and Food Chemistry, 2011, 59, 12939-12947.	2.4	14
62	Zinc Inhibition of Bacterial Cytochrome <i>bc</i> ₁ Reveals the Role of Cytochrome <i>b</i> E295 in Proton Release at the Q _o Site. Biochemistry, 2011, 50, 4263-4272.	1.2	30
63	Intermonomer Electron Transfer between the Low-Potential <i>b</i> Hemes of Cytochrome <i>bc</i> ₁ . Biochemistry, 2011, 50, 1651-1663.	1.2	55
64	Decolorization of indigo carmine by laccase displayed on Bacillus subtilis spores. Enzyme and Microbial Technology, 2011, 49, 100-104.	1.6	44
65	Loss of a Conserved Tyrosine Residue of Cytochrome b Induces Reactive Oxygen Species Production by Cytochrome bc1. Journal of Biological Chemistry, 2011, 286, 18139-18148.	1.6	38
66	Ascochlorin is a novel, specific inhibitor of the mitochondrial cytochrome bc1 complex. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 360-370.	0.5	79
67	Cytochrome c biogenesis: the Ccm system. Trends in Microbiology, 2010, 18, 266-274.	3.5	166
68	Across Membrane Communication between the Q _o and Q _i Active Sites of Cytochrome <i>bc</i> ₁ . Biochemistry, 2009, 48, 1888-1899.	1.2	53
69	Structural and Mutational Studies of the Cytochrome bc 1 Complex. Advances in Photosynthesis and Respiration, 2009, , 425-450.	1.0	4
70	The role of molecular modeling in the design of analogues of the fungicidal natural products crocacins A and D. Bioorganic and Medicinal Chemistry, 2008, 16, 10345-10355.	1.4	39
71	Soluble Variants of Rhodobacter capsulatus Membrane-anchored Cytochrome cy Are Efficient Photosynthetic Electron Carriers. Journal of Biological Chemistry, 2008, 283, 13964-13972.	1.6	11
72	Dre2, a Conserved Eukaryotic Fe/S Cluster Protein, Functions in Cytosolic Fe/S Protein Biogenesis. Molecular and Cellular Biology, 2008, 28, 5569-5582.	1.1	145

#	Article	IF	CITATIONS
73	Cytochrome bc1-cy Fusion Complexes Reveal the Distance Constraints for Functional Electron Transfer Between Photosynthesis Components. Journal of Biological Chemistry, 2008, 283, 13973-13982.	1.6	22
74	The Cytochrome c Maturation Components CcmF, CcmH, and CcmI Form a Membrane-integral Multisubunit Heme Ligation Complex. Journal of Biological Chemistry, 2008, 283, 29715-29722.	1.6	39
75	Characterization of a Novel d -Lyxose Isomerase from Cohnella laevoribosii RI-39 sp. nov. Journal of Bacteriology, 2007, 189, 1655-1663.	1.0	48
76	X-Ray Absorption Studies of Zn2+ Binding Sites in Bacterial, Avian, and Bovine Cytochrome bc1 Complexes. Biophysical Journal, 2007, 93, 2934-2951.	0.2	29
77	Identification and expression of GH-8 family chitosanases from severalBacillus thuringiensissubspecies. FEMS Microbiology Letters, 2007, 277, 133-141.	0.7	20
78	Production of d-tagatose at high temperatures using immobilized Escherichia coli cells expressing l-arabinose isomerase from Thermotoga neapolitana. Biotechnology Letters, 2007, 29, 569-574.	1.1	47
79	A functional hybrid between the cytochrome bc1 complex and its physiological membrane-anchored electron acceptor cytochrome cy in Rhodobacter capsulatus. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 346-352.	0.5	9
80	Purification and characterization of a fibrinolytic subtilisin-like protease of Bacillus subtilis TP-6 from an Indonesian fermented soybean, Tempeh. Journal of Industrial Microbiology and Biotechnology, 2006, 33, 436-444.	1.4	64
81	Characterization of a Thermoacidophilic I -Arabinose Isomerase from Alicyclobacillus acidocaldarius : Role of Lys-269 in pH Optimum. Applied and Environmental Microbiology, 2005, 71, 7888-7896.	1.4	89
82	A thermodynamic study of mesophilic, thermophilic, and hyperthermophilicl-arabinose isomerases: The effects of divalent metal ions on protein stability at elevated temperatures. FEBS Letters, 2005, 579, 1261-1266.	1.3	23
83	Distinct metal dependence for catalytic and structural functions in the l-arabinose isomerases from the mesophilic Bacillus halodurans and the thermophilic Geobacillus stearothermophilus. Archives of Biochemistry and Biophysics, 2005, 434, 333-343.	1.4	85
84	Characterization of a Thermostable l-Arabinose (d-Galactose) Isomerase from the Hyperthermophilic Eubacterium Thermotoga maritima. Applied and Environmental Microbiology, 2004, 70, 1397-1404.	1.4	125
85	Native-feather degradation by Fervidobacterium islandicum AW-1, a newly isolated keratinase-producing thermophilic anaerobe. Archives of Microbiology, 2002, 178, 538-547.	1.0	210
86	Cloning, expression and characterization of l-arabinose isomerase fromThermotoga neapolitana: bioconversion of d-galactose to d-tagatose using the enzyme. FEMS Microbiology Letters, 2002, 212, 121-126.	0.7	120
87	Weissella kimchii sp. nov., a novel lactic acid bacterium from kimchi International Journal of Systematic and Evolutionary Microbiology, 2002, 52, 507-511.	0.8	83
88	Isolation and characterization of a thermophilic lipase fromBacillus thermoleovoransID-1. FEMS Microbiology Letters, 1999, 179, 393-400.	0.7	235
89	Isolation and characterization of a thermophilic lipase from Bacillus thermoleovorans ID-1. FEMS Microbiology Letters, 1999, 179, 393-400.	0.7	10