Farooqahmed S Kittur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3483342/publications.pdf

Version: 2024-02-01

22 papers 1,179 citations

840776 11 h-index 677142 22 g-index

22 all docs

docs citations

22

times ranked

22

1611 citing authors

#	Article	IF	CITATIONS
1	Rethinking the necessity of low glucose intervention for cerebral ischemia/reperfusion injury. Neural Regeneration Research, 2022, 17, 1397.	3.0	12
2	Glycoengineering tobacco plants to stably express recombinant human erythropoietin with different N-glycan profiles. International Journal of Biological Macromolecules, 2020, 157, 158-169.	7. 5	12
3	Recombinant asialoerythropoetin protects HL-1 cardiomyocytes from injury via suppression of Mst1 activation. Biochemistry and Biophysics Reports, 2019, 17, 157-168.	1.3	10
4	Plant-Produced Asialo-Erythropoietin Restores Pancreatic Beta-Cell Function by Suppressing Mammalian Sterile-20-like Kinase (MST1) and Caspase-3 Activation. Frontiers in Pharmacology, 2017, 8, 208.	3.5	12
5	C-Terminally fused affinity Strep-tag II is removed by proteolysis from recombinant human erythropoietin expressed in transgenic tobacco plants. Plant Cell Reports, 2015, 34, 507-516.	5.6	7
6	Two-step purification procedure for recombinant human asialoerythropoietin expressed in transgenic plants. International Journal of Biological Macromolecules, 2015, 72, 1111-1116.	7. 5	6
7	Differential expression of a novel gene <i>EaF82a</i> in green and yellow sectors of variegated <i>Epipremnum aureum</i> leaves is related to uneven distribution of auxin. Physiologia Plantarum, 2014, 152, 749-762.	5.2	3
8	Alteration of the Alkaloid Profile in Genetically Modified Tobacco Reveals a Role of Methylenetetrahydrofolate Reductase in Nicotine <i>N</i> -Demethylation Â. Plant Physiology, 2013, 161, 1049-1060.	4.8	12
9	Cytoprotective Effect of Recombinant Human Erythropoietin Produced in Transgenic Tobacco Plants. PLoS ONE, 2013, 8, e76468.	2.5	21
10	Identification and characterization of selenate- and selenite-responsive genes in a Se-hyperaccumulator Astragalus racemosus. Molecular Biology Reports, 2012, 39, 7635-7646.	2.3	12
11	N-Glycosylation engineering of tobacco plants to produce asialoerythropoietin. Plant Cell Reports, 2012, 31, 1233-1243.	5.6	16
12	Deletion of the N-terminal dirigent domain in maize \hat{l}^2 -glucosidase aggregating factor and its homolog sorghum lectin dramatically alters the sugar-specificities of their lectin domains. Plant Physiology and Biochemistry, 2010, 48, 731-734.	5.8	15
13	Determination of \hat{l}^2 -glucosidase aggregating factor (BGAF) binding and polymerization regions on the maize \hat{l}^2 -glucosidase isozyme Glu1. Phytochemistry, 2009, 70, 1355-1365.	2.9	6
14	Lysine-81 and Threonine-82 on Maize \hat{l}^2 -Glucosidase Isozyme Glu1 Are the Key Amino Acids Involved in \hat{l}^2 -Glucosidase Aggregating Factor Binding. Biochemistry, 2009, 48, 2924-2932.	2.5	4
15	Homolog of the maize Â-glucosidase aggregating factor from sorghum is a jacalin-related GalNAc-specific lectin but lacks protein aggregating activity. Glycobiology, 2008, 19, 277-287.	2.5	15
16	Maize \hat{l}^2 -Glucosidase-aggregating Factor Is a Polyspecific Jacalin-related Chimeric Lectin, and Its Lectin Domain Is Responsible for \hat{l}^2 -Glucosidase Aggregation. Journal of Biological Chemistry, 2007, 282, 7299-7311.	3.4	43
17	The Cofactor Function of the N-terminal Domain of Tissue Factor. Journal of Biological Chemistry, 2004, 279, 39745-39749.	3.4	11
18	The Critical Role of the 185–189-Loop in the Factor Xa Interaction with Na+ and Factor Va in the Prothrombinase Complex. Journal of Biological Chemistry, 2004, 279, 48262-48269.	3.4	40

#	Article	IF	CITATIONS
19	Role of the N-terminal Epidermal Growth Factor-like Domain of Factor X/Xa. Journal of Biological Chemistry, 2004, 279, 24189-24196.	3.4	10
20	Chitin $\hat{a} \in \text{``}$ The Undisputed Biomolecule of Great Potential. Critical Reviews in Food Science and Nutrition, 2003, 43, 61-87.	10.3	757
21	Fusion of family 2b carbohydrate-binding module increases the catalytic activity of a xylanase fromThermotoga maritimato soluble xylan. FEBS Letters, 2003, 549, 147-151.	2.8	52
22	Functional packaging properties of chitosan films. European Food Research and Technology, 1998, 206, 44-47.	0.6	103