Luca Carniello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3483308/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Critical bifurcation of shallow microtidal landforms in tidal flats and salt marshes. Proceedings of the United States of America, 2006, 103, 8337-8341.	3.3	222
2	Biologically-controlled multiple equilibria of tidal landforms and the fate of the Venice lagoon. Geophysical Research Letters, 2007, 34, .	1.5	199
3	Spatially integrative metrics reveal hidden vulnerability of microtidal salt marshes. Nature Communications, 2017, 8, 14156.	5.8	167
4	The importance of being coupled: Stable states and catastrophic shifts in tidal biomorphodynamics. Journal of Geophysical Research, 2010, 115, .	3.3	150
5	Morphological evolution of the Venice lagoon: Evidence from the past and trend for the future. Journal of Geophysical Research, 2009, 114, .	3.3	127
6	A combined wind wave-tidal model for the Venice lagoon, Italy. Journal of Geophysical Research, 2005, 110, n/a-n/a.	3.3	113
7	Influence of storm surges and sea level on shallow tidal basin erosive processes. Journal of Geophysical Research, 2010, 115, .	3.3	108
8	Modeling sand-mud transport induced by tidal currents and wind waves in shallow microtidal basins: Application to the Venice Lagoon (Italy). Estuarine, Coastal and Shelf Science, 2012, 102-103, 105-115.	0.9	96
9	Wind waves in shallow microtidal basins and the dynamic equilibrium of tidal flats. Journal of Geophysical Research, 2007, 112, .	3.3	86
10	Experimental analysis of tidal network growth and development. Continental Shelf Research, 2010, 30, 950-962.	0.9	83
11	Modeling wind waves and tidal flows in shallow micro-tidal basins. Estuarine, Coastal and Shelf Science, 2011, 92, 263-276.	0.9	81
12	Dynamic response of marshes to perturbations in suspended sediment concentrations and rates of relative sea level rise. Journal of Geophysical Research, 2011, 116, .	3.3	77
13	Selfâ€organization of shallow basins in tidal flats and salt marshes. Journal of Geophysical Research, 2007, 112, .	3.3	71
14	Mathematical modeling of flooding due to river bank failure. Advances in Water Resources, 2013, 59, 82-94.	1.7	64
15	Changes in the windâ€wave field and related saltâ€marsh lateral erosion: inferences from the evolution of the Venice Lagoon in the last four centuries. Earth Surface Processes and Landforms, 2019, 44, 1633-1646.	1.2	52
16	A comparative study of physical and numerical modeling of tidal network ontogeny. Journal of Geophysical Research F: Earth Surface, 2014, 119, 892-912.	1.0	51
17	Sediment dynamics in shallow tidal basins: In situ observations, satellite retrievals, and numerical modeling in the Venice Lagoon. Journal of Geophysical Research F: Earth Surface, 2014, 119, 802-815.	1.0	50
18	Signatures of sea level changes on tidal geomorphology: Experiments on network incision and retreat. Geophysical Research Letters, 2012, 39, .	1.5	49

#	Article	IF	CITATIONS
19	An ecogeomorphic model of tidal channel initiation and elaboration in progressive marsh accretional contexts. Journal of Geophysical Research F: Earth Surface, 2015, 120, 1040-1064.	1.0	48
20	Statistical mechanics of wind waveâ€induced erosion in shallow tidal basins: Inferences from the Venice Lagoon. Geophysical Research Letters, 2013, 40, 3402-3407.	1.5	46
21	Integrated mathematical modeling of hydrological and hydrodynamic response to rainfall events in rural lowland catchments. Water Resources Research, 2014, 50, 5941-5957.	1.7	41
22	Marsh resilience to sea-level rise reduced by storm-surge barriers in the Venice Lagoon. Nature Geoscience, 2021, 14, 906-911.	5.4	41
23	Sediment and vegetation spatial dynamics facing sea-level rise in microtidal salt marshes: Insights from an ecogeomorphic model. Advances in Water Resources, 2016, 93, 249-264.	1.7	35
24	Simplified methods for real-time prediction of storm surge uncertainty: The city of Venice case study. Advances in Water Resources, 2014, 71, 177-185.	1.7	34
25	Statistical characterization of spatiotemporal sediment dynamics in the Venice lagoon. Journal of Geophysical Research F: Earth Surface, 2016, 121, 1049-1064.	1.0	32
26	Sea level rise, hydrologic runoff, and the flooding of Venice. Water Resources Research, 2008, 44, .	1.7	30
27	Anthropogenic Modifications Can Significantly Influence the Local Mean Sea Level and Affect the Survival of Salt Marshes in Shallow Tidal Systems. Journal of Geophysical Research F: Earth Surface, 2018, 123, 996-1012.	1.0	30
28	Two dimensional modelling of flood flows and suspended sedimenttransport: the case of the Brenta River, Veneto (Italy). Natural Hazards and Earth System Sciences, 2004, 4, 165-181.	1.5	28
29	Morphodynamic evolution and stratal architecture of translating tidal point bars: Inferences from the northern Venice Lagoon (Italy). Sedimentology, 2018, 65, 1354-1377.	1.6	28
30	Optimal floodgate operation for river flood management: The case study of Padova (Italy). Journal of Hydrology: Regional Studies, 2020, 30, 100702.	1.0	28
31	Analysis of the drainage density of experimental and modelled tidal networks. Earth Surface Dynamics, 2014, 2, 105-116.	1.0	26
32	Addressing the effect of the Mo.S.E. barriers closure on wind setup within the Venice lagoon. Estuarine, Coastal and Shelf Science, 2019, 225, 106249.	0.9	26
33	Control of wind-wave power on morphological shape of salt marsh margins. Water Science and Engineering, 2020, 13, 45-56.	1.4	26
34	Assessing the morphodynamic response of human-altered tidal embayments. Geomorphology, 2018, 320, 127-141.	1.1	24
35	Loss of geomorphic diversity in shallow tidal embayments promoted by storm-surge barriers. Science Advances, 2022, 8, eabm8446.	4.7	23
36	Threeâ€Dimensional Flow Structures and Morphodynamic Evolution of Microtidal Meandering Channels. Water Resources Research, 2020, 56, e2020WR027822.	1.7	22

#	Article	IF	CITATIONS
37	The first operations of Mo.S.E. system to prevent the flooding of Venice: Insights on the hydrodynamics of a regulated lagoon. Estuarine, Coastal and Shelf Science, 2021, 261, 107547.	0.9	22
38	Tidal Flow Asymmetry and Discharge of Lateral Tributaries Drive the Evolution of a Microtidal Meander in the Venice Lagoon (Italy). Journal of Geophysical Research F: Earth Surface, 2019, 124, 3043-3066.	1.0	21
39	Morphodynamic evolution and sedimentology of a microtidal meander bend of the Venice Lagoon (Italy). Marine and Petroleum Geology, 2018, 96, 391-404.	1.5	20
40	Water and sediment temperature dynamics in shallow tidal environments: The role of the heat flux at the sediment-water interface. Advances in Water Resources, 2018, 113, 126-140.	1.7	18
41	On the feedback between water turbidity and microphytobenthos growth in shallow tidal environments. Earth Surface Processes and Landforms, 2019, 44, 1192-1206.	1.2	18
42	An approximate solution to the flow field on vegetated intertidal platforms: Applicability and limitations. Journal of Geophysical Research F: Earth Surface, 2014, 119, 1682-1703.	1.0	15
43	Remote Sensing for Optimal Estimation of Water Temperature Dynamics in Shallow Tidal Environments. Remote Sensing, 2020, 12, 51.	1.8	13
44	How long the Mo.S.E. barriers will be effective in protecting all urban settlements within the Venice Lagoon? The wind setup constraint. Coastal Engineering, 2021, 168, 103923.	1.7	13
45	A simplified model for frictionally dominated tidal flows. Geophysical Research Letters, 2012, 39, .	1.5	11
46	Multipurpose Use of Artificial Channel Networks for Flood Risk Reduction: The Case of the Waterway Padova–Venice (Italy). Water (Switzerland), 2020, 12, 1609.	1.2	11
47	Natural and Human-Induced Flow and Sediment Transport within Tidal Creek Networks Influenced by Ocean-Bay Tides. Water (Switzerland), 2019, 11, 1493.	1.2	9
48	Astronomic link to anomalously high mean sea level in the northern Adriatic Sea. Estuarine, Coastal and Shelf Science, 2021, 257, 107418.	0.9	9
49	Dataset of wind setup in a regulated Venice lagoon. Data in Brief, 2019, 26, 104386.	0.5	8
50	Experimental Setup and Measuring System to Study Solitary Wave Interaction with Rigid Emergent Vegetation. Sensors, 2019, 19, 1787.	2.1	8
51	Modelling, simulation and real-time control of a laboratory tide generation system. Control Engineering Practice, 2019, 83, 165-175.	3.2	7
52	Modelling and Simulation of an Artificial Tide Generation System. IFAC-PapersOnLine, 2018, 51, 13-18.	0.5	3
53	A conceptual model for the long term evolution of tidal flats in the Venice lagoon. , 2007, , 137-144.		3
54	MORPHODYNAMIC RESPONSE TO HUMAN ACTIVITIES IN THE BAY OF CAÃ,ÂƊIZ (2012-2015). Coastal Engineering Proceedings, 2017, , 16.	0.1	2

#	Article	IF	CITATIONS
55	Model-free Control of an Artificial Tide Generation Experimental Apparatus. IFAC-PapersOnLine, 2018, 51, 829-834.	0.5	2
56	Multiple equilibria in tidal eco-geomorphology. , 2007, , 263-269.		1
57	Laboratory experiments on solitary wave interaction with rigid emergent vegetation: some preliminary results. , 2018, , .		Ο
58	Mathematical Modeling of Tidal Flow Over Saltmarshes and Tidal Flats With Applications to the Venice Lagoon. , 2019, , 325-355.		0
59	River, Coastal and Estuarine Morphodynamics Selected papers from the 10th anniversary of the RCEM Symposium. Earth Surface Processes and Landforms, 2020, 45, 1311-1314.	1.2	Ο
60	Modelling Tidal Environments. , 2021, , .		0