
F Raquel Maia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3482948/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent approaches towards bone tissue engineering. Bone, 2022, 154, 116256.	1.4	42
2	Engineering of Extracellular Matrix‣ike Biomaterials at Nano―and Macroscale toward Fabrication of Hierarchical Scaffolds for Bone Tissue Engineering. Advanced NanoBiomed Research, 2022, 2, 2100116.	1.7	7
3	Numerical and experimental simulation of a dynamic-rotational 3D cell culture for stratified living tissue models. Biofabrication, 2022, 14, 025022.	3.7	2
4	Osteogenic lithium-doped brushite cements for bone regeneration. Bioactive Materials, 2022, 16, 403-417.	8.6	13
5	Synthesis of mussel-inspired polydopamine-gallium nanoparticles for biomedical applications. Nanomedicine, 2021, 16, 5-17.	1.7	1
6	Modulation of inflammation by anti-TNF α mAb-dendrimer nanoparticles loaded in tyramine-modified gellan gum hydrogels in a cartilage-on-a-chip model. Journal of Materials Chemistry B, 2021, 9, 4211-4218.	2.9	17
7	Fabrication of biocompatible porous SAIB/silk fibroin scaffolds using ionic liquids. Materials Chemistry Frontiers, 2021, 5, 6582-6591.	3.2	6
8	Bioengineered Nanoparticles Loaded-Hydrogels to Target TNF Alpha in Inflammatory Diseases. Pharmaceutics, 2021, 13, 1111.	2.0	13
9	Influence of gellan gum-hydroxyapatite spongy-like hydrogels on human osteoblasts under long-term osteogenic differentiation conditions. Materials Science and Engineering C, 2021, 129, 112413.	3.8	7
10	Carbon nanotube-reinforced cell-derived matrix-silk fibroin hierarchical scaffolds for bone tissue engineering applications. Journal of Materials Chemistry B, 2021, 9, 9561-9574.	2.9	13
11	Combining experiments and in silico modeling to infer the role of adhesion and proliferation on the collective dynamics of cells. Scientific Reports, 2021, 11, 19894.	1.6	3
12	Finding the perfect match between nanoparticles and microfluidics to respond to cancer challenges. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 24, 102139.	1.7	11
13	Ionic Liquid-Mediated Processing of SAIB-Chitin Scaffolds. ACS Sustainable Chemistry and Engineering, 2020, 8, 3986-3994.	3.2	12
14	Nanoparticles and Microfluidic Devices in Cancer Research. Advances in Experimental Medicine and Biology, 2020, 1230, 161-171.	0.8	4
15	Physicochemical properties and cytocompatibility assessment of non-degradable scaffolds for bone tissue engineering applications. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 112, 103997.	1.5	17
16	Microfluidic Devices and Three Dimensional-Printing Strategies for in vitro Models of Bone. Advances in Experimental Medicine and Biology, 2020, 1230, 1-14.	0.8	2
17	Kefiran cryogels as potential scaffolds for drug delivery and tissue engineering applications. Materials Today Communications, 2019, 20, 100554.	0.9	27
18	Lactoferrin-Hydroxyapatite Containing Spongy-Like Hydrogels for Bone Tissue Engineering. Materials, 2019, 12, 2074.	1.3	24

F RAQUEL MAIA

#	Article	IF	CITATIONS
19	Peptideâ€Modified Dendrimer Nanoparticles for Targeted Therapy of Colorectal Cancer. Advanced Therapeutics, 2019, 2, 1900132.	1.6	33
20	Scaffolding Strategies for Tissue Engineering and Regenerative Medicine Applications. Materials, 2019, 12, 1824.	1.3	309
21	Combinatory approach for developing silk fibroin scaffolds for cartilage regeneration. Acta Biomaterialia, 2018, 72, 167-181.	4.1	93
22	Differentiation of osteoclast precursors on gellan gum-based spongy-like hydrogels for bone tissue engineering. Biomedical Materials (Bristol), 2018, 13, 035012.	1.7	18
23	Biological performance of a promising Kefiran-biopolymer with potential in regenerative medicine applications: a comparative study with hyaluronic acid. Journal of Materials Science: Materials in Medicine, 2018, 29, 124.	1.7	27
24	Tissue Engineering Strategies for Osteochondral Repair. Advances in Experimental Medicine and Biology, 2018, 1059, 353-371.	0.8	33
25	Kefiran biopolymer: Evaluation of its physicochemical and biological properties. Journal of Bioactive and Compatible Polymers, 2018, 33, 461-478.	0.8	26
26	A semiautomated microfluidic platform for real-time investigation of nanoparticles' cellular uptake and cancer cells' tracking. Nanomedicine, 2017, 12, 581-596.	1.7	19
27	Cell Culture Methods. , 2017, , 619-635.		0
28	Management of knee osteoarthritis. Current status and future trends. Biotechnology and Bioengineering, 2017, 114, 717-739.	1.7	74
29	Gellan gum-coated gold nanorods: an intracellular nanosystem for bone tissue engineering. RSC Advances, 2015, 5, 77996-78005.	1.7	44
30	Effect of Cell Density on Mesenchymal Stem Cells Aggregation in RGDâ€Alginate 3D Matrices under Osteoinductive Conditions. Macromolecular Bioscience, 2014, 14, 759-771.	2.1	52
31	Hydrogel depots for local co-delivery of osteoinductive peptides and mesenchymal stem cells. Journal of Controlled Release, 2014, 189, 158-168.	4.8	62
32	Matrix-driven formation of mesenchymal stem cell–extracellular matrix microtissues on soft alginate hydrogels. Acta Biomaterialia, 2014, 10, 3197-3208.	4.1	85
33	Functionalization of biomaterials with small osteoinductive moieties. Acta Biomaterialia, 2013, 9, 8773-8789.	4.1	79
34	Enzymatic, physicochemical and biological properties of MMP-sensitive alginate hydrogels. Soft Matter, 2013, 9, 3283.	1.2	52