
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3482904/publications.pdf Version: 2024-02-01

LING-RIN KONC

#	Article	IF	CITATIONS
1	Hydrothermal Synthesis and Pseudocapacitance Properties of α-MnO ₂ Hollow Spheres and Hollow Urchins. Journal of Physical Chemistry C, 2007, 111, 19141-19147.	3.1	478
2	Facile approach to prepare loose-packed NiO nano-flakes materials for supercapacitors. Chemical Communications, 2008, , 4213.	4.1	380
3	Design and synthesis of CoMoO ₄ –NiMoO ₄ ·xH ₂ O bundles with improved electrochemical properties for supercapacitors. Journal of Materials Chemistry A, 2013, 1, 1380-1387.	10.3	328
4	In-situ electrochemical polymerization of multi-walled carbon nanotube/polyaniline composite films for electrochemical supercapacitors. Synthetic Metals, 2009, 159, 260-266.	3.9	226
5	Facile approach to prepare loose-packed cobalt hydroxide nano-flakes materials for electrochemical capacitors. Journal of Power Sources, 2009, 194, 1194-1201.	7.8	218
6	A Sol–Gel Process for Fabrication of NiO/NiCo ₂ O ₄ /Co ₃ O ₄ Composite with Improved Electrochemical Behavior for Electrochemical Capacitors. ACS Applied Materials & Interfaces, 2012, 4, 4631-4636.	8.0	202
7	Investigating metal-organic framework as a new pseudo-capacitive material for supercapacitors. Chinese Chemical Letters, 2014, 25, 957-961.	9.0	188
8	Asymmetric supercapacitors based on stabilized α-Ni(OH)2 and activated carbon. Journal of Solid State Electrochemistry, 2010, 14, 1533-1539.	2.5	186
9	Porous wood carbon monolith for high-performance supercapacitors. Electrochimica Acta, 2012, 60, 443-448.	5.2	179
10	Pomelo peels-derived porous activated carbon microsheets dual-doped with nitrogen and phosphorus for high performance electrochemical capacitors. Journal of Power Sources, 2018, 378, 499-510.	7.8	170
11	Cobalt vanadate as highly active, stable, noble metal-free oxygen evolution electrocatalyst. Journal of Materials Chemistry A, 2014, 2, 18435-18443.	10.3	169
12	A facile approach to the preparation of loose-packed Ni(OH)2 nanoflake materials for electrochemical capacitors. Journal of Solid State Electrochemistry, 2009, 13, 333-340.	2.5	163
13	Synthesis and characterization of M3V2O8 (M = Ni or Co) based nanostructures: a new family of high performance pseudocapacitive materials. Journal of Materials Chemistry A, 2014, 2, 4919.	10.3	161
14	One-pot hydrothermal synthesis of porous nickel cobalt phosphides with high conductivity for advanced energy conversion and storage. Electrochimica Acta, 2016, 215, 114-125.	5.2	159
15	Amorphous Ni–P materials for high performance pseudocapacitors. Journal of Power Sources, 2015, 274, 1107-1113.	7.8	140
16	The specific capacitance of sol–gel synthesised spinel MnCo2O4 in an alkaline electrolyte. Electrochimica Acta, 2014, 115, 22-27.	5.2	128
17	Facile synthesis of NiMoO4·xH2O nanorods as a positive electrode material for supercapacitors. RSC Advances, 2013, 3, 6472.	3.6	123
18	Biopolymer-based carboxylated chitosan hydrogel film crosslinked by HCl as gel polymer electrolyte for all-solid-sate supercapacitors. Journal of Power Sources, 2019, 426, 47-54.	7.8	122

#	Article	IF	CITATIONS
19	Asymmetric Supercapacitor Based on Loose-Packed Cobalt Hydroxide Nanoflake Materials and Activated Carbon. Journal of the Electrochemical Society, 2009, 156, A1000.	2.9	121
20	Electrostatically Charged MoS ₂ /Graphene Oxide Hybrid Composites for Excellent Electrochemical Energy Storage Devices. ACS Applied Materials & Interfaces, 2018, 10, 35571-35579.	8.0	113
21	Hierarchically porous nickel hydroxide/mesoporous carbon composite materials for electrochemical capacitors. Microporous and Mesoporous Materials, 2010, 132, 154-162.	4.4	108
22	Supercapacitor electrode of nano-Co3O4 decorated with gold nanoparticles via in-situ reduction method. Journal of Power Sources, 2017, 363, 1-8.	7.8	108
23	Identifying pseudocapacitance of Fe ₂ O ₃ in an ionic liquid and its application in asymmetric supercapacitors. Journal of Materials Chemistry A, 2014, 2, 14550-14556.	10.3	105
24	Design and synthesis of 3D Co3O4@MMoO4 (M=Ni, Co) nanocomposites as high-performance supercapacitor electrodes. Electrochimica Acta, 2014, 130, 660-669.	5.2	103
25	An Approach to Preparing Ni–P with Different Phases for Use as Supercapacitor Electrode Materials. Chemistry - A European Journal, 2015, 21, 17897-17903.	3.3	103
26	Hydrothermal process for the fabrication of CoMoO4·0.9H2O nanorods with excellent electrochemical behavior. New Journal of Chemistry, 2012, 36, 1713.	2.8	102
27	MWNTs/PANI composite materials prepared by in-situ chemical oxidative polymerization for supercapacitor electrode. Journal of Materials Science, 2008, 43, 3664-3669.	3.7	94
28	Watchbandâ€Like Supercapacitors with Body Temperature Inducible Shape Memory Ability. Advanced Energy Materials, 2016, 6, 1600763.	19.5	94
29	Facile fabrication of CoMoO4 nanorods as electrode material for electrochemical capacitors. Materials Letters, 2013, 94, 197-200.	2.6	89
30	Facile synthesis of high electrical conductive CoP via solid-state synthetic routes for supercapacitors. Journal of Energy Chemistry, 2017, 26, 49-55.	12.9	86
31	The empirical correlations between PM2.5, PM10 and AOD in the Beijing metropolitan region and the PM2.5, PM10 distributions retrieved by MODIS. Environmental Pollution, 2016, 216, 350-360.	7.5	84
32	Porous cobalt hydroxide film electrodeposited on nickel foam with excellent electrochemical capacitive behavior. Journal of Solid State Electrochemistry, 2011, 15, 571-577.	2.5	81
33	Preparation of novel nano-composite Ni(OH)2/USY material and its application for electrochemical capacitance storageElectronic supplementary information (ESI) available: calculation method of the measured and theoretical specific capacitance. See http://www.rsc.org/suppdata/cc/b4/b401922a/. Chemical Communications, 2004, , 1646.	4.1	78
34	An Asymmetric Supercapacitor with Both Ultra-High Gravimetric and Volumetric Energy Density Based on 3D Ni(OH) ₂ /MnO ₂ @Carbon Nanotube and Activated Polyaniline-Derived Carbon. ACS Applied Materials & Interfaces, 2017, 9, 668-676.	8.0	78
35	Synthesis of polypyrrole film by pulse galvanostatic method and its application as supercapacitor electrode materials. Journal of Materials Science, 2010, 45, 1947-1954.	3.7	77
36	Supercapacitor Electrode Based on Nano-Vanadium Nitride Incorporated on Porous Carbon Nanospheres Derived from Ionic Amphiphilic Block Copolymers & Vanadium-Contained Ion Assembly Systems. Electrochimica Acta, 2016, 211, 469-477.	5.2	77

#	Article	IF	CITATIONS
37	Design and synthesis of Ni2P/Co3V2O8 nanocomposite with enhanced electrochemical capacitive properties. Electrochimica Acta, 2016, 190, 1041-1049.	5.2	73
38	The structural and magnetic properties of Co-doped titanate nanotubes synthesized under hydrothermal conditions. Applied Physics A: Materials Science and Processing, 2007, 87, 781-786.	2.3	72
39	Co[sub 0.56]Ni[sub 0.44] Oxide Nanoflake Materials and Activated Carbon for Asymmetric Supercapacitor. Journal of the Electrochemical Society, 2010, 157, A1341.	2.9	72
40	3D Hierarchically Structured CoS Nanosheets: Li ⁺ Storage Mechanism and Application of the High-Performance Lithium-Ion Capacitors. ACS Applied Materials & Interfaces, 2020, 12, 3709-3718.	8.0	72
41	Highly ordered MnO2 nanowire array thin films on Ti/Si substrate as an electrode for electrochemical capacitor. Journal of Solid State Chemistry, 2006, 179, 1351-1355.	2.9	70
42	Simple synthesis of a CoMoS ₄ based nanostructure and its application for high-performance supercapacitors. RSC Advances, 2016, 6, 7633-7642.	3.6	69
43	Advanced asymmetric supercapacitors based on Ni ₃ (PO ₄) ₂ @GO and Fe ₂ O ₃ @GO electrodes with high specific capacitance and high energy density. RSC Advances, 2015, 5, 41721-41728.	3.6	68
44	Adjusting electrode initial potential to obtain high-performance asymmetric supercapacitor based on porous vanadium pentoxide nanotubes and activated carbon nanorods. Journal of Power Sources, 2015, 279, 358-364.	7.8	66
45	Design and preparation of MoO 2 /MoS 2 as negative electrode materials for supercapacitors. Materials and Design, 2016, 112, 88-96.	7.0	62
46	A facile route to preparation of CdS nanorods. Materials Chemistry and Physics, 2003, 77, 734-737.	4.0	60
47	Negative electrode materials of molybdenum nitride/N-doped carbon nano-fiber via electrospinning method for high-performance supercapacitors. Electrochimica Acta, 2018, 277, 41-49.	5.2	60
48	Nano-Au@PANI core-shell nanoparticles via in-situ polymerization as electrode for supercapacitor. Journal of Alloys and Compounds, 2017, 722, 1-7.	5.5	58
49	A facile strategy for the synthesis of three-dimensional heterostructure self-assembled MoSe ₂ nanosheets and their application as an anode for high-energy lithium-ion hybrid capacitors. Nanoscale, 2019, 11, 7263-7276.	5.6	57
50	Nano-composite of polypyrrole/modified mesoporous carbon for electrochemical capacitor application. Electrochimica Acta, 2010, 55, 8067-8073.	5.2	56
51	Mechanical alloying synthesis of Ni 3 S 2 nanoparticles as electrode material for pseudocapacitor with excellent performances. Journal of Alloys and Compounds, 2016, 656, 138-145.	5.5	56
52	Design, synthesis and evaluation of three-dimensional Co3O4/Co3(VO4)2 hybrid nanorods on nickel foam as self-supported electrodes for asymmetric supercapacitors. Journal of Power Sources, 2014, 269, 61-68.	7.8	54
53	Carbon nanosphere@vanadium nitride electrode materials derived from metal-organic nanospheres self-assembled by NH4VO3, chitosan, and amphiphilic block copolymer. Electrochimica Acta, 2018, 262, 66-73.	5.2	54
54	A Sol-Gel Process for the Synthesis of NiCo2O4Having Improved Specific Capacitance and Cycle Stability for Electrochemical Capacitors. Journal of the Electrochemical Society, 2012, 159, A1262-A1266.	2.9	53

#	Article	IF	CITATIONS
55	Electrochemical performance in alkaline and neutral electrolytes of a manganese phosphate material possessing a broad potential window. RSC Advances, 2016, 6, 40077-40085.	3.6	53
56	Supercapacitor electrodes based on nano-polyaniline deposited on hollow carbon spheres derived from cross-linked co-polymers. Synthetic Metals, 2015, 209, 369-376.	3.9	52
57	Facile preparation of nitrogen-doped hierarchical porous carbon with high performance in supercapacitors. Applied Surface Science, 2016, 364, 850-861.	6.1	52
58	Intercalation structure of vanadium nitride nanoparticles growing on graphene surface toward high negative active material for supercapacitor utilization. Journal of Alloys and Compounds, 2019, 781, 1054-1058.	5.5	52
59	Facile fabrication and perfect cycle stability of 3D NiO@CoMoO4 nanocomposite on Ni foam for supercapacitors. RSC Advances, 2014, 4, 17884.	3.6	51
60	Nanocomposites based on hierarchical porous carbon fiber@vanadium nitride nanoparticles as supercapacitor electrodes. Dalton Transactions, 2018, 47, 4128-4138.	3.3	51
61	Design of Lamellar Mo ₂ C Nanosheets Assembled by Mo ₂ C Nanoparticles as an Anode Material toward Excellent Sodium-Ion Capacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 18375-18383.	6.7	51
62	Synthesis of Co(OH)2/USY composite and its application for electrochemical supercapacitors. Journal of Power Sources, 2004, 136, 197-200.	7.8	48
63	A novel polyaniline/mesoporous carbon nano-composite electrode for asymmetric supercapacitor. Chinese Chemical Letters, 2010, 21, 1509-1512.	9.0	48
64	Diamine molecules double lock-link structured graphene oxide sheets for high-performance sodium ions storage. Energy Storage Materials, 2021, 34, 45-52.	18.0	48
65	Design and preparation of highly structure-controllable mesoporous carbons at the molecular level and their application as electrode materials for supercapacitors. Journal of Materials Chemistry A, 2015, 3, 22781-22793.	10.3	47
66	Synthesis of polyvalent ion reaction of MoS2/CoS2-RGO anode materials for high-performance sodium-ion batteries and sodium-ion capacitors. Journal of Colloid and Interface Science, 2020, 575, 42-53.	9.4	47
67	VO ₂ : from negative electrode material to symmetric electrochemical capacitor. RSC Advances, 2015, 5, 97239-97247.	3.6	45
68	Waste paper based activated carbon monolith as electrode materials for high performance electric double-layer capacitors. RSC Advances, 2012, 2, 1890.	3.6	44
69	Facile fabrication of manganese phosphate nanosheets for supercapacitor applications. Ionics, 2016, 22, 1461-1469.	2.4	43
70	Construction of high electrical conductive nickel phosphide alloys with controllable crystalline phase for advanced energy storage. Electrochimica Acta, 2017, 232, 387-395.	5.2	43
71	In situ polymerization and reduction to fabricate gold nanoparticleâ€incorporated polyaniline as supercapacitor electrode materials. Polymers for Advanced Technologies, 2018, 29, 1697-1705.	3.2	43
72	Nanoflake-like cobalt hydroxide/ordered mesoporous carbon composite for electrochemical capacitors. Journal of Solid State Electrochemistry, 2010, 14, 2065-2075.	2.5	41

#	Article	IF	CITATIONS
73	A hierarchical porous carbon membrane from polyacrylonitrile/polyvinylpyrrolidone blending membranes: Preparation, characterization and electrochemical capacitive performance. Journal of Energy Chemistry, 2014, 23, 684-693.	12.9	41
74	Activated hierarchical porous carbon as electrode membrane accommodated with triblock copolymer for supercapacitors. Journal of Membrane Science, 2016, 514, 366-375.	8.2	41
75	Facile fabrication of ultrathin hybrid membrane for highly flexible supercapacitors via in-situ phase separation of polyethersulfone. Journal of Power Sources, 2016, 329, 104-114.	7.8	41
76	High Volumetric Energy Density Capacitors Based on New Electrode Material Lanthanum Nitride. ACS Energy Letters, 2017, 2, 336-341.	17.4	41
77	Concise N-doped Carbon Nanosheets/Vanadium Nitride Nanoparticles Materials via Intercalative Polymerization for Supercapacitors. Scientific Reports, 2018, 8, 2915.	3.3	41
78	Fabrication of flower-like Ni3(NO3)2(OH)4 and their electrochemical properties evaluation. Materials Research Bulletin, 2012, 47, 1641-1647.	5.2	39
79	Hierarchically Interconnected Ni ₃ S ₂ Nanofibers as Binder-Free Electrodes for High-Performance Sodium-Ion Energy-Storage Devices. ACS Applied Nano Materials, 2019, 2, 2634-2641.	5.0	39
80	Crystal Phase-Controlled Synthesis of the CoP@Co ₂ P Heterostructure with 3D Nanowire Networks for High-Performance Li-Ion Capacitor Applications. ACS Applied Materials & Interfaces, 2021, 13, 10071-10088.	8.0	39
81	Facile synthesis of Co3P2O8·8H2O for high-performance electrochemical energy storage. Materials Letters, 2015, 161, 404-407.	2.6	38
82	Synthesis and high catalytic properties of mesoporous Pt nanowire array by novel conjunct template method. Applied Surface Science, 2008, 255, 3388-3393.	6.1	37
83	Nickel vanadate and nickel oxide nanohybrid on nickel foam as pseudocapacitive electrodes for electrochemical capacitors. RSC Advances, 2014, 4, 41772-41777.	3.6	37
84	Easy fabrication and high electrochemical capacitive performance of hierarchical porous carbon by a method combining liquid-liquid phase separation and pyrolysis process. Electrochimica Acta, 2014, 138, 367-375.	5.2	37
85	<i>In situ</i> doping of <scp>PANI</scp> nanocomposites by gold nanoparticles for highâ€performance electrochemical energy storage. Journal of Applied Polymer Science, 2017, 134, 45309.	2.6	37
86	Polymer/block copolymer blending system as the compatible precursor system for fabrication of mesoporous carbon nanofibers for supercapacitors. Journal of Power Sources, 2019, 419, 137-147.	7.8	37
87	Platinum catalyst on ordered mesoporous carbon with controlled morphology for methanol electrochemical oxidation. Applied Surface Science, 2010, 256, 6688-6693.	6.1	36
88	Polyaniline nanoparticles grown on the surface of carbon microspheres aggregations for electrochemical supercapacitors. Synthetic Metals, 2012, 162, 114-118.	3.9	35
89	Mesoporous Co3O4 materials obtained from cobalt–citrate complex and their high capacitance behavior. Journal of Power Sources, 2012, 217, 358-363.	7.8	35
90	Preparation of hierarchical polyaniline nanotubes based on selfâ€assembly and its electrochemical capacitance. Polymers for Advanced Technologies, 2012, 23, 1297-1301.	3.2	34

#	Article	IF	CITATIONS
91	A dandelion-like carbon microsphere/MnO2 nanosheets composite for supercapacitors. Journal of Energy Chemistry, 2014, 23, 82-90.	12.9	34
92	Fabrication and electrochemical investigation of MWO4 (M = Co, Ni) nanoparticles as high-performance anode materials for lithium-ion batteries. Ionics, 2018, 24, 363-372.	2.4	34
93	Three-Dimensional Interconnected Reticular Porous Carbon From Corn Starch By a Sample Sol–Gel Method Toward High-Performance Supercapacitors With Aqueous and Ionic Liquid Electrolytes. ACS Sustainable Chemistry and Engineering, 2019, 7, 18690-18699.	6.7	34
94	Alkali-tolerant polymeric gel electrolyte membrane based on cross-linked carboxylated chitosan for supercapacitors. Journal of Membrane Science, 2021, 629, 119083.	8.2	33
95	Design and Synthesis of CoP/r-GO Hierarchical Architecture: Dominated Pseudocapacitance, Fasted Kinetics Features, and Li-Ion Capacitor Applications. ACS Applied Energy Materials, 2020, 3, 5448-5461.	5.1	31
96	Silicon quantum-wires arrays synthesized by chemical vapor deposition and its micro-structural properties. Chemical Physics Letters, 2003, 374, 542-547.	2.6	30
97	Fabrication of promising LiFePO4/C composite with a core–shell structure by a moderate in situ carbothermal reduction method. Electrochimica Acta, 2012, 70, 19-24.	5.2	30
98	Facile synthesis of MoS2/graphite intercalated composite with enhanced electrochemical performance for sodium ion battery. Journal of Energy Chemistry, 2018, 27, 1208-1213.	12.9	30
99	Large interlayer spacing 2D Ta4C3 matrix supported 2D MoS2 nanosheets: A 3D heterostructure composite towards high-performance sodium ions storage. Renewable Energy, 2021, 169, 573-581.	8.9	30
100	Nano vanadium nitride incorporated onto interconnected porous carbon via the method of surface-initiated electrochemical mediated ATRP and heat-treatment approach for supercapacitors. Electrochimica Acta, 2017, 258, 405-413.	5.2	29
101	Interfacial Engineering in Crystalline Cobalt Tungstate/Amorphous Cobalt Boride Heterogeneous Nanostructures for Enhanced Electrochemical Performances. ACS Applied Energy Materials, 2020, 3, 11470-11479.	5.1	29
102	Platinum-Free Ternary Metallic Selenides as Nanostructured Counter Electrode for High-Efficiency Dye-Sensitized Solar Cell by Interface Engineering. ACS Applied Energy Materials, 2020, 3, 3704-3713.	5.1	29
103	NiMoO ₄ -modified MnO ₂ hybrid nanostructures on nickel foam: electrochemical performance and supercapacitor applications. New Journal of Chemistry, 2015, 39, 6207-6215.	2.8	28
104	Electrochemical Performance of Pseudo-Capacitive Intermetallic Molybdenum Nitride in Acid. Journal of the Electrochemical Society, 2016, 163, A1300-A1305.	2.9	27
105	Multi-dimensional hybrid heterostructure MoS2@C nanocomposite as a highly reversible anode for high-energy lithium-ion capacitors. Applied Surface Science, 2020, 531, 147222.	6.1	27
106	Effect of surfactant on the morphology and capacitive performance of porous NiCo2O4. Journal of Solid State Electrochemistry, 2013, 17, 1463-1471.	2.5	26
107	Three-dimensional honeycomb-like MoSe2/rGO as high performance sodium ions storage materials with long cycle stability and high rate capability. Applied Surface Science, 2020, 513, 145826.	6.1	26
108	Boosting the performance of cobalt molybdate nanorods by introducing nanoflake-like cobalt boride to form a heterostructure for aqueous hybrid supercapacitors. Journal of Colloid and Interface Science, 2020, 565, 388-399.	9.4	26

#	Article	IF	CITATIONS
109	Branched silver nanowires obtained in porous anodic aluminum oxide template. Journal of Materials Science Letters, 2003, 22, 701-702.	0.5	25
110	Synthesis and electrochemical properties of hollow polyaniline microspheres by a sulfonated polystyrene template. Journal of Applied Polymer Science, 2013, 127, 1544-1549.	2.6	25
111	Mechanical Alloying Synthesis of Co9S8 Particles as Materials for Supercapacitors. Metals, 2016, 6, 142.	2.3	25
112	A Facile Strategy for the Preparation of MoS ₃ and its Application as a Negative Electrode for Supercapacitors. Chemistry - an Asian Journal, 2016, 11, 2392-2398.	3.3	25
113	One-step synthesis of micro/nano flower-like Ni3V2O8 as anode for Li-ion batteries. Materials Letters, 2017, 186, 289-292.	2.6	25
114	Dulseâ€derived porous carbon–polyaniline nanocomposite electrode for highâ€performance supercapacitors. Journal of Applied Polymer Science, 2018, 135, 45776.	2.6	25
115	Special layer-structured WS ₂ nanoflakes as high performance sodium ion storage materials. Sustainable Energy and Fuels, 2019, 3, 1239-1247.	4.9	25
116	Preparation of nano-PANI@MnO2 by surface initiated polymerization method using as a nano-tubular electrode material: The amount effect of aniline on the microstructure and electrochemical performance. Journal of Energy Chemistry, 2015, 24, 388-393.	12.9	24
117	Hollow Carbon Microspheres/MnO2 Nanosheets Composites: Hydrothermal Synthesis and Electrochemical Behaviors. Nano-Micro Letters, 2015, 7, 59-67.	27.0	23
118	Facile synthesis of a nickel vanadate/Ni composite and its electrochemical performance as an anode for lithium ion batteries. RSC Advances, 2016, 6, 90197-90205.	3.6	23
119	RGO-modified CoWO4 nanoparticles as new high-performance electrode materials for sodium-ion storage. lonics, 2019, 25, 533-540.	2.4	23
120	A facile approach to preparation of nanostripes on the electropolished aluminum surface. Materials Letters, 2005, 59, 1656-1659.	2.6	22
121	Electroless gold deposition on silicon(100) wafer based on a seed layer of silver. Applied Physics A: Materials Science and Processing, 2005, 80, 597-600.	2.3	22
122	Synthesis of Co–Ni oxide microflowers as a superior anode for hybrid supercapacitors with ultralong cycle life. Chinese Chemical Letters, 2017, 28, 206-212.	9.0	22
123	Solid-phase synthesis and electrochemical pseudo-capacitance of nitrogen-atom interstitial compound Co ₃ N. Sustainable Energy and Fuels, 2018, 2, 1178-1188.	4.9	22
124	Super long-life supercapacitor electrode materials based on hierarchical porous hollow carbon microcapsules. RSC Advances, 2015, 5, 87077-87083.	3.6	21
125	Polycationic bimetallic oxide CoGa2O4 with spinel structure: dominated pseudocapacitance, dual-energy storage mechanism, and Li-ion hybrid supercapacitor application. Ionics, 2020, 26, 1379-1388.	2.4	21
126	Coral reef-like polyanaline nanotubes prepared by a reactive template of manganese oxide for supercapacitor electrode. Chinese Chemical Letters, 2011, 22, 964-968.	9.0	20

#	Article	IF	CITATIONS
127	Template-free synthesis of porous–LiFePO4/C nanocomposite for high power lithium-ion batteries. Electrochimica Acta, 2014, 123, 1-6.	5.2	20
128	New amphiphilic block copolymer-modified electrodes for supercapacitors. New Journal of Chemistry, 2018, 42, 1290-1299.	2.8	20
129	Synthesis of ultra-small gold nanoparticles decorated onto NiO nanobelts and their high electrochemical performance. Dalton Transactions, 2018, 47, 8078-8086.	3.3	20
130	Liquid phase reduction synthesis of a cobalt boride–activated carbon composite with improved specific capacitance and retention rate as a new positive electrode material for supercapacitors. New Journal of Chemistry, 2019, 43, 14475-14484.	2.8	20
131	High-capacity and fast Na-ion diffusion rate three-dimensional MoS2/SnS2-RGO anode for advanced sodium-ion batteries and sodium-ion capacitors. Solid State Ionics, 2020, 355, 115416.	2.7	20
132	Nanostructure-modified in-situ synthesis of nitrogen-doped porous carbon microspheres (NPCM) loaded with FeTe2 nanocrystals and NPCM as superior anodes to construct high-performance lithium-ion capacitors. Electrochimica Acta, 2020, 337, 135749.	5.2	20
133	A crystalline nickel vanadium oxide@amorphous cobalt boride nanocomposites with enhanced specific capacity for hybrid supercapacitors. Electrochimica Acta, 2021, 377, 138086.	5.2	19
134	Three-dimensional nanostructured NiO–Co3(VO4)2 compound on nickel foam as pseudocapacitive electrodes for electrochemical capacitors. Journal of Alloys and Compounds, 2015, 627, 313-319.	5.5	18
135	Toward interconnected hierarchical porous structure via chemical depositing organic nano-polyaniline on inorganic carbon scaffold for supercapacitor. Synthetic Metals, 2015, 199, 205-213.	3.9	18
136	Facile synthesis of Co 3 V 2 O 8 nanoparticle arrays on Ni foam as binder-free electrode with improved lithium storage properties. Ceramics International, 2017, 43, 1166-1173.	4.8	18
137	Coprecipitation Reaction System Synthesis and Lithium-Ion Capacitor Energy Storage Application of the Porous Structural Bimetallic Sulfide CoMoS ₄ Nanoparticles. ACS Omega, 2018, 3, 8803-8812.	3.5	18
138	Interconnected porous composites electrode materials of Carbon@Vanadium nitride by directly absorbing VO3 Electrochimica Acta, 2019, 306, 113-121.	5.2	18
139	Realizing high-performance and low-cost lithium-ion capacitor by regulating kinetic matching between ternary nickel cobalt phosphate microspheres anode with ultralong-life and super-rate performance and watermelon peel biomass-derived carbon cathode. Journal of Colloid and Interface Science. 2021, 598, 283-301.	9.4	18
140	A bird nest-like manganese dioxide and its application as electrode in supercapacitors. Journal of Energy Chemistry, 2013, 22, 928-934.	12.9	17
141	Fabrication of 3D Co3O4–Ni3(VO4)2 heterostructured nanorods on nickel foam possessing improved electrochemical properties for supercapacitor electrodes. New Journal of Chemistry, 2014, 38, 3236.	2.8	17
142	A high performance redox-mediated electrolyte for improving properties of metal oxides based pseudocapacitive materials. Electrochimica Acta, 2015, 186, 478-485.	5.2	17
143	A novel carbon source coated on C-LiFePO4 as a cathode material for lithium-ion batteries. Ionics, 2016, 22, 185-192.	2.4	16
144	The design and fabrication of Co 3 O 4 /Co 3 V 2 O 8 /Ni nanocomposites as high-performance anodes for Li-ion batteries. Journal of Energy Chemistry, 2017, 26, 494-500.	12.9	16

#	Article	IF	CITATIONS
145	Well-Dispersed Vanadium Nitride on Porous Carbon Networks Derived from Block Copolymer of PAN- <i>b</i> -PDMC- <i>b</i> -PAN Absorbed with Ammonium Metavanadate for Energy Storage Application. Journal of Physical Chemistry C, 2018, 122, 143-149.	3.1	16
146	NiGa ₂ O ₄ Nanosheets in a Microflower Architecture as Anode Materials for Li-Ion Capacitors. ACS Applied Nano Materials, 2019, 2, 6238-6248.	5.0	16
147	Electrolyte-Philic Electrode Material with a Functional Polymer Brush. ACS Applied Materials & Interfaces, 2019, 11, 16087-16095.	8.0	16
148	Templateâ€Induced Selfâ€Activation Route for Hierarchical Porous Carbon Derived from Interpenetrating Polymer Networks as Electrode Material for Supercapacitors. ChemElectroChem, 2019, 6, 2648-2658.	3.4	16
149	Rational regulation ultra-microporous structure size for enhanced potassium ion storage performance. Electrochimica Acta, 2021, 378, 138141.	5.2	16
150	Design and synthesis of one-dimensional Co ₃ O ₄ /Co ₃ V ₂ O ₈ hybrid nanowires with improved Li-storage properties. RSC Advances, 2016, 6, 36418-36424.	3.6	15
151	Regulating interlayer spacing with pillarÂand strain structures in Ti3C2 MXene layers by molecular welding for superior alkali metal ionÂstorage. Materials Today Energy, 2021, 22, 100832.	4.7	15
152	Synthesis, characterization, and electrochemical properties of Ni(OH)2/ultra-stable Y zeolite composite. Journal of Materials Science, 2009, 44, 4466-4471.	3.7	14
153	A facile hydrothermal method to prepare LiFePO4/C submicron rod with core–shell structure. Ionics, 2014, 20, 15-21.	2.4	14
154	β-Bi2O3: An underlying negative electrode material obeyed electrode potential over electrochemical energy storage device. Electrochimica Acta, 2016, 192, 45-51.	5.2	14
155	Facile preparation of porous nickel oxide membrane for flexible supercapacitors electrode via phase-separation method of polymer. Materials Research Bulletin, 2018, 103, 25-31.	5.2	14
156	The synthesis of MWNTs/SWNTs multiple phase nanowire arrays in porous anodic aluminum oxide templates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 354, 92-96.	5.6	13
157	Synthesis of Y-junction carbon nanotubes within porous anodic aluminum oxide template. Solid State Communications, 2005, 133, 527-529.	1.9	13
158	A surfactant-free recipe for shape-controlled synthesis of CdSe nanocrystals. Nanotechnology, 2011, 22, 045604.	2.6	13
159	Intermetallic Molybdenum Carbide for Pseudocapacitive Electrode Material. Journal of the Electrochemical Society, 2016, 163, A2441-A2446.	2.9	13
160	Iron Gallium Oxide with High-Capacity and Super-Rate Performance as New Anode Materials for Li-Ion Capacitors. Energy & Fuels, 2021, 35, 8378-8386.	5.1	13
161	Engineering novel Ni2-XCoxP structures for high performance lithium-ion storage. Energy Storage Materials, 2022, 48, 20-34.	18.0	13
162	A polymer-supported electrolyte-affinity hybrid membrane and modification of the amphiphilic block copolymer for use as a super-high flexible and high-performance supercapacitor. Sustainable Energy and Fuels, 2017, 1, 1074-1081.	4.9	12

#	Article	IF	CITATIONS
163	Liquid phase synthesis of dendritic nickel carbide alloy with high conductivity for advanced energy storage. Journal of Energy Chemistry, 2017, 26, 750-756.	12.9	12
164	High rate capability and long cycle-life of nickel oxide membrane electrode incorporated with nickel and coated with carbon layer via in-situ supporting of engineering plastic for energy storage application. Journal of Alloys and Compounds, 2017, 710, 72-79.	5.5	12
165	A Novel Capacitive Negative Electrode Material of Fe ₃ N. Nano, 2018, 13, 1850002.	1.0	12
166	Enhanced performance for a high electrical conductive Mo ₂ C electrode based proton ionic liquid electrolytes in supercapacitors. Materials Research Express, 2018, 5, 075508.	1.6	12
167	3D hierarchical porous carbon derived from direct carbonization and <i>in-situ</i> chemical activation of potatoes toward high-performance supercapacitors. Materials Research Express, 2019, 6, 115615.	1.6	12
168	Cleverly embedded CoS2/NiS2 on two-dimensional graphene nanosheets as high-performance anode material for improved sodium ion batteries and sodium ion capacitors. Journal of Materials Science: Materials in Electronics, 2020, 31, 9946-9959.	2.2	12
169	Synthesis of high-performance Mo2S3/NiS2-RGO anode materials and its applications in sodium-ion batteries and sodium-ion capacitors. Ionics, 2020, 26, 4499-4510.	2.4	12
170	Co(OH)2/SBA-15 molecular sieves nanocomposite materials for electrochemical capacitors. Materials Chemistry and Physics, 2010, 122, 368-373.	4.0	11
171	Transferring Electrochemically Active Nanomaterials into a Flexible Membrane Electrode via Slow Phase Separation Method Induced by Water Vapor. ACS Sustainable Chemistry and Engineering, 2019, 7, 4295-4306.	6.7	11
172	Assemble from 0D to 3D: anchored 0D molybdenum carbide on 3D octahedral amorphous carbon with excellent capacitive properties. Journal of Materials Science, 2020, 55, 15562-15573.	3.7	11
173	New cathode material of NiCo2Crx-OH (x=0, 1, 1.5, 2.0) and anode material of one-off chopsticks derived carbon for high performance supercapacitor. Journal of Alloys and Compounds, 2021, 851, 156792.	5.5	11
174	Reduced graphene oxide decorated amorphous NiS2 nanosheets as high-performance anode materials for enhanced sodium-ion hybrid capacitors. Ionics, 2021, 27, 3315-3325.	2.4	11
175	Mesoporous carbons for supercapacitors obtained by the pyrolysis of block copolymers. New Carbon Materials, 2015, 30, 302-309.	6.1	10
176	Capacitive Intermetallic Manganese Nitride with High Volumetric Energy Densities. Journal of the Electrochemical Society, 2016, 163, A2830-A2834.	2.9	10
177	Synthesis of a hierarchical nanoporous carbon material with controllable pore size and effective surface area for high-performance electrochemical capacitors. RSC Advances, 2017, 7, 14516-14527.	3.6	10
178	Preparation of a NbN/graphene nanocomposite by solution impregnation and its application in high-performance Li-ion hybrid capacitors. RSC Advances, 2017, 7, 19967-19975.	3.6	10
179	The investigations of pyrophosphate CoNiP2O7 produced by hydrothermal process: a high-performance anode electrode material for Li-ion hybrid capacitor. Ionics, 2020, 26, 2989-3001.	2.4	10
180	Chemical welding of diamine molecules in graphene oxide nanosheets: Design of precisely controlled interlayer spacings with the fast Li+ diffusion coefficient toward high-performance storage application. Electrochimica Acta, 2021, 380, 138114.	5.2	10

#	Article	IF	CITATIONS
181	Whole-polymers electrode membrane based on the interfacial polymerization and intermacromolecular force between polyaniline and polyethersulfone for flexible supercapacitors. Electrochimica Acta, 2019, 318, 130-141.	5.2	9
182	Self-assembly of secondary-formed multilayer La/e-Ti3C2 as high performance supercapacitive material with excellent cycle stability and high rate capability. Journal of Alloys and Compounds, 2020, 835, 155343.	5.5	9
183	Design of kinetic well-matched Mo2C nanoparticles anchored into 3D hierarchical porous carbon towards high-rate sodium ion storage. Electrochimica Acta, 2021, 372, 137860.	5.2	9
184	Construction of MoSe2 nanoparticles anchored on layered microporous carbon heterostructure anode for high-performance and low-cost lithium-ion capacitors. Solid State Ionics, 2022, 374, 115815.	2.7	9
185	Morphology of Platinum Nanowire Array Electrodeposited Within Anodic Aluminium Oxide Template Characterized by Atomic Force Microscopy. Chinese Physics Letters, 2003, 20, 763-766.	3.3	8
186	Preparation of Co(OH)2/HY composite and its electrochemical capacitance characteristics. Journal of Materials Science, 2004, 39, 4697-4700.	3.7	8
187	Synthesis and evaluation of three-dimensional nickel molybdate nano-sheets on nickel foam as self-supported electrodes for sodium-ion hybrid capacitors. Materials Research Express, 2018, 5, 065525.	1.6	8
188	Fabrication and characterization of CoMoS4/Co3V2O8 nanocomposite as electrode material for supercapacitor. lonics, 2019, 25, 5411-5418.	2.4	8
189	Synthesis of Nitrogenâ€Doped Microporous/Mesoporous Carbon with Enhanced Pseudocapacitive Behavior for Highâ€Performance Symmetrical Supercapacitors. ChemElectroChem, 2020, 7, 2592-2598.	3.4	8
190	Interlayer Engineering Construction of 2D Nb ₂ CT _{<i>x</i>} with Enlarged Interlayer Spacing Towards High Capacity and Rate Capability for Lithiumâ€Ion Storage. Batteries and Supercaps, 2021, 4, 1473-1481.	4.7	8
191	Wettability improvement of vanadium nitride/carbon electrode nanomaterial by electrostatic absorption of hydrophilic poly (allylamine hydrochloride). Applied Surface Science, 2020, 525, 146619.	6.1	8
192	Enhancing the Kinetic Process in Biphasic Crystalline NiWO ₄ /Amorphous Coâ€B Electrode Materials toward Energy Storage with Ultrahigh Rate Performance. Chemistry - an Asian Journal, 2021, 16, 4130-4136.	3.3	8
193	Nickel Fluoride Nanorods as Anode Materials for Li-Ion Hybrid Capacitors. ACS Applied Nano Materials, 2021, 4, 11601-11610.	5.0	8
194	Metal-organic framework-derived nitrogen-doped three-dimensional porous carbon loaded CoTe2 nanoparticles as anodes for high energy lithium-ion capacitors. Journal of Energy Storage, 2022, 47, 103617.	8.1	8
195	Photoluminescence Properties of Silicon Nanowires and Carbon Nanotube-Silicon Nanowire Composite Arrays. Chinese Physics Letters, 2002, 19, 1703-1706.	3.3	7
196	Electroless deposition of Ag onto p-Si(100) surface under the condition of the centrifugal fields. Thin Solid Films, 2006, 496, 360-363.	1.8	7
197	Pseudocapacitance of ammonium metavanadate pyrolysis products. Electrochimica Acta, 2016, 192, 30-37.	5.2	7
198	Enhanced adsorption of Ni(<scp>ii</scp>) using ATP/PPy/SDS composite. RSC Advances, 2016, 6, 11735-11741.	3.6	7

#	Article	IF	CITATIONS
199	Nanocrystalline Intermetallic Tungsten Carbide: Nanoscaled Solidoid Synthesis, Nonfaradaic Pseudocapacitive Property, and Electrode Material Application. Advanced Materials Interfaces, 2017, 4, 1700099.	3.7	7
200	Amorphous Ni-C nanoparticles with high electric conductivity and high specific capacitance for rechargeable charge storage. Materials Chemistry and Physics, 2018, 205, 494-501.	4.0	7
201	MoO ₂ /Mo ₂ N hybrid nanobelts doped with gold nanoparticles and their enhanced supercapacitive behavior. New Journal of Chemistry, 2018, 42, 17895-17901.	2.8	7
202	Three-Dimensional Interconnected Microporous Carbon Network Derived from Aniline Formaldehyde Resin/Sodium Polyacrylate Interpenetrating Polymer Networks (AF/PAAS IPNs) with Controllable Porosity for Supercapacitors. ACS Applied Energy Materials, 2019, 2, 6440-6452.	5.1	7
203	The influence of zinc electrode substrate, electrolyte flow rate and current density on zinc-nickel flow cell performance. Electrochimica Acta, 2021, 373, 137890.	5.2	7
204	Amorphous Cobalt Boride Alloy Synthesized by Liquid Phase Methods as Electrode Materials for Electrochemical Capacitors. Particle and Particle Systems Characterization, 2021, 38, 2100020.	2.3	7
205	Cobalt nanoparticles encapsulated by nitrogen-doped carbon framework as anode materials for high performance lithium-ion capacitors. Journal of Electroanalytical Chemistry, 2021, 893, 115326.	3.8	7
206	Brookite phase vanadium dioxide (B) with nanosheet structure for superior rate capability aqueous Zn-ion batteries. Journal of Electroanalytical Chemistry, 2022, 907, 116039.	3.8	7
207	A Solid-State Reaction for the Synthesis of CdS Nanowires. Chemistry Letters, 2002, 31, 602-603.	1.3	6
208	Fabrication of Ni nanoparticles on ordered mesoporous carbon using an immersion-electrodeposition method. Materials Letters, 2010, 64, 2064-2067.	2.6	6
209	A porous carbon material from pyrolysis of fructus cannabis's shells for supercapacitor electrode application. Materials Research Express, 2018, 5, 025514.	1.6	6
210	Design of Ultraâ€Microporous Carbons by Interpenetrating MF Prepolymer into PAAS Networks at Molecule Level for Enhanced Electrochemical Performance. ChemElectroChem, 2020, 7, 476-485.	3.4	6
211	Crystalline Co ₂ V ₃ O ₈ @Amorphous Coâ^'B Coreâ€Shell Nanoâ€Microsphere: Tunable Shell Layer Thickness, Faradaic Pseudocapacitive Mechanism, and Electrochemical Capacitor Applications. Batteries and Supercaps, 2021, 4, 948-959.	4.7	6
212	Constructing Highâ€Performance Liâ€ion Capacitors via Cobalt Fluoride with Excellent Cyclic Stability as Anode and Coconut Shell Biomassâ€Derived Carbon as Cathode Materials. ChemistrySelect, 2021, 6, 8349-8360.	1.5	6
213	The cobalt atom protection layers in-situ anchored titanium carbide with controllable interlayer spacing towards stable and fast lithium ions storage. Journal of Colloid and Interface Science, 2022, 612, 267-276.	9.4	6
214	Enhanced Electrochemical Capacitive Properties of Nickelâ€Cobalt Oxide Nanoâ€flakes Materials. Chinese Journal of Chemistry, 2012, 30, 570-576.	4.9	5
215	Interface Engineered Binary Platinum Free Alloy-based Counter Electrodes with Improved Performance in Dye-Sensitized Solar Cells. Scientific Reports, 2020, 10, 9157.	3.3	5
216	Regulation of the mesopore proportion of porous carbon for optimizing the performance of electric double layer capacitors. Journal of Energy Storage, 2021, 35, 102299.	8.1	5

#	Article	IF	CITATIONS
217	Molybdenum dioxide supported carbon nanotubes@carbon constructs disordered nanocluster particles as anodes for lithium-ion capacitors with long-term cycling stability. Journal of Materials Science: Materials in Electronics, 2021, 32, 18912-18930.	2.2	5
218	Improving the stable Li+ storage performance by embedding reduced graphene oxide into cobalt gallium oxide as anode for Li-ion capacitor applications. Ionics, 2021, 27, 4153-4165.	2.4	5
219	Hydrothermal reaction induced phase transition of vanadium oxide towards high-performance zinc ion batteries cathode. Ionics, 2021, 27, 4793-4800.	2.4	5
220	Nanoflower Architecture NiGa ₂ O ₄ with a Spinel Structure Modified by 2D Layered RGO for Enhanced Li-Ion Battery Anode Performance. Energy & Fuels, 2022, 36, 2149-2158.	5.1	5
221	Hydrothermal synthesis of vanadium oxide nanotubes by a facile route. Rare Metals, 2006, 25, 88-93.	7.1	4
222	Vanadium Nitride Nanoparticles as Anode Material for Lithium Ion Hybrid Capacitor Applications. Journal Wuhan University of Technology, Materials Science Edition, 2019, 34, 1274-1278.	1.0	4
223	Fast lithium storage in defect-rich carbon encapsulated Fe3C nanoparticles as anode material toward high-energy lithium-ion capacitors. Ionics, 2020, 26, 23-31.	2.4	4
224	Design and Preparation of Lotus Root Knot Hierarchical Porous Carbon by Highly Efficient Chemistry Activation for Electric Double Layer Capacitors. ChemElectroChem, 2021, 8, 4062-4071.	3.4	4
225	Solid-state phase transformation of NiO into metallic Ni via ammonia reduction reaction for hybrid supercapacitors. Synthetic Metals, 2021, 281, 116899.	3.9	4
226	γ-Mo ₂ N Nanobelts with Controlled Grain and Mesopore Sizes as High-Performance Anodes for Lithium-Ion Capacitors. ACS Applied Nano Materials, 2021, 4, 12514-12526.	5.0	4
227	Selection of oxygen reduction catalysts for secondary tri-electrode zinc–air batteries. Scientific Reports, 2022, 12, 6696.	3.3	4
228	Ultra-high capacity and ultra-long cyclability anode materials of non-layered vanadium carbide(V8C7)@carbon microspheres for biapplications in Li-ion battery and Li-ion capacitor. Journal of Alloys and Compounds, 2022, 921, 166138.	5.5	4
229	The rods-like manganese dioxide films grown on nickel foam for electrochemical capacitor applications. Russian Journal of Electrochemistry, 2013, 49, 975-982.	0.9	3
230	Hydrothermal Synthesis and Electrochemical Measurements of Interconnected Porous Carbon/MnO ₂ Composites. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2014, 30, 881-890.	4.9	3
231	Nitrogen-doped micro-nano carbon spheres with multi-scale pore structure obtained from interpenetrating polymer networks for electrochemical capacitors. RSC Advances, 2018, 8, 35083-35093.	3.6	3
232	A flexible membrane electrode with an electrolyte-affinity surface for energy storage: effects of amphiphilic block copolymers and membrane thickness. Sustainable Energy and Fuels, 2018, 2, 1844-1854.	4.9	3
233	Facile Preparation of Novel Hierarchically Porous Carbon at the Molecular Level for Supercapacitor Electrode Application. Nano, 2018, 13, 1850091.	1.0	3
234	High-performance sodium-ion capacitors with SnS2/ZnS-reduced graphene oxide anodes and biomass waste-derived porous carbon cathodes. Ionics, 2021, 27, 1781-1794.	2.4	3

#	Article	IF	CITATIONS
235	Pure Cu particle obtained by ammonia reduction reaction: A new class of electrodes for hybrid supercapacitors. Journal of Energy Storage, 2021, 39, 102636.	8.1	3
236	Fe-doped CoS2 nanospheres decorated by reduced graphene oxide nanosheets as ultrahigh-rate anodes for advanced sodium-ion capacitors. Journal of Electroanalytical Chemistry, 2021, 901, 115740.	3.8	3
237	Influence of Subnanoporous Carbon with a Customizable Pore Structure on Aqueous Supercapacitors. ACS Applied Energy Materials, 2022, 5, 7081-7090.	5.1	3
238	Ag Catalyst on Ordered Mesoporous Carbon with High Electro-Oxidation Activity for Formaldehyde. Advanced Materials Research, 0, 347-353, 494-497.	0.3	2
239	Synthesis, Characterization, and Electrochemical Properties of Mn ₃ O ₄ /Cr ₂ O ₃ Composite. Advanced Materials Research, 0, 463-464, 555-559.	0.3	2
240	A Hydrothermal Process for the Fabrication of Nickel Foam Based NiO and Co ₃ 0 ₄ Nanostructures with Excellent Properties for Electrochemical Capacitors. Applied Mechanics and Materials, 0, 291-294, 786-790.	0.2	2
241	Hybrid annealing method synthesis of Li[Li _{0.2} Ni _{0.2} Mn _{0.6}]O ₂ composites with enhanced electrochemical performance for lithium-ion batteries. RSC Advances, 2015, 5, 3352-3357.	3.6	2
242	Fundamental Triangular Interaction of Electron Trajectory Deviation and P–N Junction to Promote Redox Reactions for the High-Energy-Density Electrode. ACS Applied Materials & Interfaces, 2020, 12, 29404-29413.	8.0	2
243	Nanoparticles of Iron Nitride Encapsulated in Nitrogenâ€Doped Carbon Bulk Derived from Polyaniline/Fe ₂ O ₃ Blends and Its Electrochemical Performance. Particle and Particle Systems Characterization, 2020, 37, 2000132.	2.3	2
244	CoS2 nanoparticles grown in situ on rGO nanosheet as a potential anode material toward high-performance sodium-ion hybrid capacitors. Journal of Materials Science: Materials in Electronics, 2021, 32, 15251-15264.	2.2	2
245	Manganese fluoride as non-battery type anode for high performance Li-ion capacitors. Journal of Energy Storage, 2021, , 103594.	8.1	2
246	A Comparative Study of Potentiostatic and Potentiodynamic Method in the Synthesis of MnO ₂ Films for Electrochemical Capacitors. Advanced Materials Research, 0, 239-242, 501-505.	0.3	1
247	Construction of 3D polypyrrole/CoS/graphene composite electrode with enhanced pseudocapacitive performance. lonics, 2018, 24, 2689-2696.	2.4	1
248	Modification of ultra-micropore dominated carbon by O/N-containing functional groups grafted for enhanced supercapacitor performances. Dalton Transactions, 2021, 50, 10471-10481.	3.3	1
249	Metallic Co: A promising electrode materials to boost electrochemical performances of Co3O4 for energy storage. Journal of Electroanalytical Chemistry, 2021, 895, 115496.	3.8	1
250	Zn-doped CoS2 nanospheres embedded on two dimensional reduced graphene oxide nanosheets as anode materials for enhanced sodium-ion hybrid capacitors. Journal of Materials Science: Materials in Electronics, 0, , 1.	2.2	1
251	Silver Nanoparticles Supported on Ordered Mesoporous Carbon for Formaldehyde Electrooxidation. Applied Mechanics and Materials, 0, 110-116, 508-513.	0.2	Ο
252	Low temperature formation of mesoporous Co <inf>3</inf> O <inf>4</inf> and their supercapacitive properties. , 2011, , .		0

#	Article	IF	CITATIONS
253	Polyaniline nanoparticles for supercapacitor prepared by using polystyrene microsphere as carrier. , 2011, , .		0

Intermetallics: Nanocrystalline Intermetallic Tungsten Carbide: Nanoscaled Solidoid Synthesis, Nonfaradaic Pseudocapacitive Property, and Electrode Material Application (Adv. Mater. Interfaces) Tj ETQq0 0 0 rg 🛙 / Overlack 10 Tf 50

255	New Findings of Pseudocapacitive Behaviors in Cupric Tungstate Dihydrate. Journal of Physical Chemistry C, 2022, 126, 3853-3863.	3.1	0
-----	---	-----	---