
## Hosung Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3482195/publications.pdf Version: 2024-02-01



HOSLING KIM

| #  | Article                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Extensive migration of young neurons into the infant human frontal lobe. Science, 2016, 354, .                                                                                                                | 12.6 | 293       |
| 2  | A large, open source dataset of stroke anatomical brain images and manual lesion segmentations.<br>Scientific Data, 2018, 5, 180011.                                                                          | 5.3  | 170       |
| 3  | Hippocampal Substructural Vulnerability to Sleep Disturbance and Cognitive Impairment in Patients<br>with Chronic Primary Insomnia: Magnetic Resonance Imaging Morphometry. Sleep, 2014, 37, 1189-1198.       | 1.1  | 150       |
| 4  | Automated detection of cortical dysplasia type II in MRI-negative epilepsy. Neurology, 2014, 83, 48-55.                                                                                                       | 1.1  | 148       |
| 5  | Spatial patterns of water diffusion along white matter tracts in temporal lobe epilepsy. Neurology, 2012, 79, 455-462.                                                                                        | 1.1  | 111       |
| 6  | Mapping thalamocortical network pathology in temporal lobe epilepsy. Neurology, 2012, 78, 129-136.                                                                                                            | 1.1  | 95        |
| 7  | Patterns of subregional mesiotemporal disease progression in temporal lobe epilepsy. Neurology, 2013,<br>81, 1840-1847.                                                                                       | 1.1  | 82        |
| 8  | Cortical Thinning and Altered Cortico-Cortical Structural Covariance of the Default Mode Network<br>in Patients with Persistent Insomnia Symptoms. Sleep, 2016, 39, 161-171.                                  | 1.1  | 75        |
| 9  | The association between cardiac physiology, acquired brain injury, and postnatal brain growth in<br>critical congenital heart disease. Journal of Thoracic and Cardiovascular Surgery, 2018, 155, 291-300.e3. | 0.8  | 61        |
| 10 | Effects of long-term treatment on brain volume in patients with obstructive sleep apnea syndrome.<br>Human Brain Mapping, 2016, 37, 395-409.                                                                  | 3.6  | 54        |
| 11 | The <scp>ENIGMA</scp> Stroke Recovery Working Group: Big data neuroimaging to study brain–behavior relationships after stroke. Human Brain Mapping, 2022, 43, 129-148.                                        | 3.6  | 54        |
| 12 | Automatic hippocampal segmentation in temporal lobe epilepsy: Impact of developmental abnormalities.<br>NeuroImage, 2012, 59, 3178-3186.                                                                      | 4.2  | 52        |
| 13 | Quantitative surface analysis of combined MRI and PET enhances detection of focal cortical dysplasias. NeuroImage, 2018, 166, 10-18.                                                                          | 4.2  | 49        |
| 14 | A comparison of automated lesion segmentation approaches for chronic stroke T1â€weighted MRI data.<br>Human Brain Mapping, 2019, 40, 4669-4685.                                                               | 3.6  | 49        |
| 15 | Cochlear Implantation in Postlingually Deaf Adults is Time-sensitive Towards Positive Outcome:<br>Prediction using Advanced Machine Learning Techniques. Scientific Reports, 2018, 8, 18004.                  | 3.3  | 43        |
| 16 | Age-Related Differences in Brain Morphology and the Modifiers in Middle-Aged and Older Adults.<br>Cerebral Cortex, 2019, 29, 4169-4193.                                                                       | 2.9  | 42        |
| 17 | Deep Learning Detection of Penumbral Tissue on Arterial Spin Labeling in Stroke. Stroke, 2020, 51,<br>489-497.                                                                                                | 2.0  | 39        |
| 18 | Retrospective motion artifact correction of structural MRI images using deep learning improves the quality of cortical surface reconstructions. NeuroImage, 2021, 230, 117756.                                | 4.2  | 39        |

Ноѕимс Кім

| #  | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | NEOCIVET: Towards accurate morphometry of neonatal gyrification and clinical applications in preterm newborns. NeuroImage, 2016, 138, 28-42.                                                                 | 4.2  | 37        |
| 20 | The LONI QC System: A Semi-Automated, Web-Based and Freely-Available Environment for the Comprehensive Quality Control of Neuroimaging Data. Frontiers in Neuroinformatics, 2019, 13, 60.                    | 2.5  | 34        |
| 21 | Temporal lobe epilepsy: Differential pattern of damage in temporopolar cortex and white matter.<br>Human Brain Mapping, 2008, 29, 931-944.                                                                   | 3.6  | 30        |
| 22 | Hindbrain regional growth in preterm newborns and its impairment in relation to brain injury. Human<br>Brain Mapping, 2016, 37, 678-688.                                                                     | 3.6  | 29        |
| 23 | Disentangling Hippocampal Shape Anomalies in Epilepsy. Frontiers in Neurology, 2013, 4, 131.                                                                                                                 | 2.4  | 28        |
| 24 | A Surface Patch-Based Segmentation Method for Hippocampal Subfields. Lecture Notes in Computer Science, 2016, , 379-387.                                                                                     | 1.3  | 28        |
| 25 | Early changes in brain structure correlate with language outcomes in children with neonatal encephalopathy. Neurolmage: Clinical, 2017, 15, 572-580.                                                         | 2.7  | 27        |
| 26 | Surface-based multi-template automated hippocampal segmentation: Application to temporal lobe epilepsy. Medical Image Analysis, 2012, 16, 1445-1455.                                                         | 11.6 | 25        |
| 27 | White matter tract-specific alterations in male patients with untreated obstructive sleep apnea are associated with worse cognitive function. Sleep, 2020, 43, .                                             | 1.1  | 25        |
| 28 | Beyond sleepy: structural and functional changes of the default-mode network in idiopathic hypersomnia. Sleep, 2019, 42, .                                                                                   | 1.1  | 23        |
| 29 | Morphological alterations in amygdalo-hippocampal substructures in narcolepsy patients with cataplexy. Brain Imaging and Behavior, 2016, 10, 984-994.                                                        | 2.1  | 22        |
| 30 | Disruption and Compensation of Sulcation-based Covariance Networks in Neonatal Brain Growth after Perinatal Injury. Cerebral Cortex, 2020, 30, 6238-6253.                                                    | 2.9  | 19        |
| 31 | ENIGMA leep: Challenges, opportunities, and the road map. Journal of Sleep Research, 2021, 30, e13347.                                                                                                       | 3.2  | 19        |
| 32 | Multivariate Hippocampal Subfield Analysis of Local MRI Intensity and Volume: Application to Temporal Lobe Epilepsy. Lecture Notes in Computer Science, 2014, 17, 170-178.                                   | 1.3  | 18        |
| 33 | Surface-Based Vector Analysis Using Heat Equation Interpolation: A New Approach to Quantify Local<br>Hippocampal Volume Changes. Lecture Notes in Computer Science, 2008, 11, 1008-1015.                     | 1.3  | 18        |
| 34 | Pyruvate to Lactate Metabolic Changes during Neurodevelopment Measured Dynamically Using<br>Hyperpolarized <sup>13</sup> C Imaging in Juvenile Murine Brain. Developmental<br>Neuroscience, 2016, 38, 34-40. | 2.0  | 17        |
| 35 | Microstructure of the Default Mode Network in Preterm Infants. American Journal of<br>Neuroradiology, 2017, 38, 343-348.                                                                                     | 2.4  | 17        |
| 36 | Altered regional cerebral blood flow in obstructive sleep apnea is associated with sleep<br>fragmentation and oxygen desaturation. Journal of Cerebral Blood Flow and Metabolism, 2021, 41,<br>2712-2724.    | 4.3  | 17        |

Hosung Kim

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Altered cerebrocerebellar functional connectivity in patients with obstructive sleep apnea and its association with cognitive function. Sleep, 2022, 45, .                                        | 1.1 | 17        |
| 38 | Accurate cortical tissue classification on <scp>MRI</scp> by modeling cortical folding patterns.<br>Human Brain Mapping, 2015, 36, 3563-3574.                                                     | 3.6 | 16        |
| 39 | Egocentric and allocentric visuospatial working memory in premotor Huntington's disease: A double dissociation with caudate and hippocampal volumes. Neuropsychologia, 2017, 101, 57-64.          | 1.6 | 16        |
| 40 | Imputation Strategy for Reliable Regional MRI Morphological Measurements. Neuroinformatics, 2020,<br>18, 59-70.                                                                                   | 2.8 | 13        |
| 41 | Cortical reorganization following auditory deprivation predicts cochlear implant performance in postlingually deaf adults. Human Brain Mapping, 2021, 42, 233-244.                                | 3.6 | 13        |
| 42 | Morphological Development Trajectory and Structural Covariance Network of the Human Fetal<br>Cortical Plate during the Early Second Trimester. Cerebral Cortex, 2021, 31, 4794-4807.              | 2.9 | 12        |
| 43 | Robust Cortical Thickness Morphometry of Neonatal Brain and Systematic Evaluation Using Multi-Site<br>MRI Datasets. Frontiers in Neuroscience, 2021, 15, 650082.                                  | 2.8 | 10        |
| 44 | A Skeleton and Deformation Based Model for Neonatal Pial Surface Reconstruction in Preterm Newborns. , 2019, , .                                                                                  |     | 9         |
| 45 | Surface-based morphometry reveals caudate subnuclear structural damage in patients with premotor Huntington disease. Brain Imaging and Behavior, 2017, 11, 1365-1372.                             | 2.1 | 8         |
| 46 | A five-year longitudinal study reveals progressive cortical thinning in narcolepsy and faster cortical thinning in relation to early-onset. Brain Imaging and Behavior, 2020, 14, 200-212.        | 2.1 | 8         |
| 47 | Deep Learning of Cortical Surface Features Using Graph-Convolution Predicts Neonatal Brain Age and Neurodevelopmental Outcome. , 2020, , .                                                        |     | 8         |
| 48 | Chronic Stroke Sensorimotor Impairment Is Related to Smaller Hippocampal Volumes: An ENIGMA<br>Analysis. Journal of the American Heart Association, 2022, 11, e025109.                            | 3.7 | 8         |
| 49 | Smaller spared subcortical nuclei are associated with worse post-stroke sensorimotor outcomes in 28 cohorts worldwide. Brain Communications, 2021, 3, fcab254.                                    | 3.3 | 7         |
| 50 | Vertex-Wise Shape Analysis of the Hippocampus: Disentangling Positional Differences from Volume<br>Changes. Lecture Notes in Computer Science, 2011, 14, 352-359.                                 | 1.3 | 5         |
| 51 | NEOCIVET: Extraction of Cortical Surface and Analysis of Neonatal Gyrification Using a Modified CIVET Pipeline. Lecture Notes in Computer Science, 2015, , 571-579.                               | 1.3 | 4         |
| 52 | Neuromarkers from Whole-Brain Functional Connectivity Reveal the Cognitive Recovery Scheme for<br>Overt Hepatic Encephalopathy after Liver Transplantation. ENeuro, 2021, 8, ENEURO.0114-21.2021. | 1.9 | 4         |
| 53 | Hippocampal asymmetry of regional development and structural covariance in preterm neonates.<br>Cerebral Cortex, 2022, 32, 4271-4283.                                                             | 2.9 | 4         |
| 54 | Multi-Template Mesiotemporal Lobe Segmentation: Effects of Surface and Volume Feature Modeling.<br>Frontiers in Neuroinformatics, 2018, 12, 39.                                                   | 2.5 | 3         |

Ноѕимс Кім

| #  | Article                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Cyto/myeloarchitecture of cortical gray matter and superficial white matter in early<br>neurodevelopment: multimodal MRI study in preterm neonates. Cerebral Cortex, 2022, 33, 357-373. | 2.9 | 3         |
| 56 | Robust Surface-Based Multi-template Automated Algorithm to Segment Healthy and Pathological<br>Hippocampi. Lecture Notes in Computer Science, 2011, 14, 445-453.                        | 1.3 | 2         |
| 57 | Brain Injury in the Preterm and Term Neonate. Current Radiology Reports, 2016, 4, 1.                                                                                                    | 1.4 | 1         |
| 58 | Random Forest Regression Combined with MRI Brain Morphometry Predicts Surgical Outcome of Cochlear Implantation. , 2019, , .                                                            |     | 1         |
| 59 | Alterations of cortical thickness and grayâ€white matter contrast in Alzheimer's disease and Lewy<br>bodyâ€related cognitive impairment. Alzheimer's and Dementia, 2020, 16, e041245.   | 0.8 | 1         |
| 60 | Learning to Synthesize Cortical Morphological Changes using Graph Conditional Variational Autoencoder. , 2021, 2021, 1495-1499.                                                         |     | 1         |
| 61 | 407 Explanatory analysis of polysomnography for the identification of sleep apnea hypopnea events using deep learning neural network. Sleep, 2021, 44, A161-A162.                       | 1.1 | О         |