
Chang-Jung Chiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3482179/publications.pdf Version: 2024-02-01

Снаме-шие Снаме

#	Article	IF	CITATIONS
1	Extracorporeal shockwave therapy improves short-term functional outcomes of shoulder adhesive capsulitis. Journal of Shoulder and Elbow Surgery, 2014, 23, 1843-1851.	2.6	49
2	Optimized decellularization protocol including $\hat{I}\pm$ -Gal epitope reduction for fabrication of an acellular porcine annulus fibrosus scaffold. Cell and Tissue Banking, 2017, 18, 383-396.	1.1	43
3	Removal of fixation construct could mitigate adjacent segment stress after lumbosacral fusion: A finite element analysis. Clinical Biomechanics, 2017, 43, 115-120.	1.2	41
4	The stability of long-segment and short-segment fixation for treating severe burst fractures at the thoracolumbar junction in osteoporotic bone: A finite element analysis. PLoS ONE, 2019, 14, e0211676.	2.5	24
5	Radiofrequency neurotomy in chronic lumbar and sacroiliac joint pain. Medicine (United States), 2019, 98, e16230.	1.0	21
6	Biomechanical analysis of single-level interbody fusion with different internal fixation rod materials: a finite element analysis. BMC Musculoskeletal Disorders, 2020, 21, 100.	1.9	18
7	Time course investigation of intervertebral disc degeneration in a rat-tail puncture model. Life Sciences, 2016, 156, 15-20.	4.3	15
8	Assessment of the suitability of biodegradable rods for use in posterior lumbar fusion: An in-vitro biomechanical evaluation and finite element analysis. PLoS ONE, 2017, 12, e0188034.	2.5	14
9	Fabrication and properties of acellular porcine anulus fibrosus for tissue engineering in spine surgery. Journal of Orthopaedic Surgery and Research, 2014, 9, 118.	2.3	12
10	The effect of annular repair on the failure strength of the porcine lumbar disc after needle puncture and punch injury. European Spine Journal, 2016, 25, 906-912.	2.2	11
11	Biomechanical arrangement of threaded and unthreaded portions providing holding power of transpedicular screw fixation. Clinical Biomechanics, 2016, 39, 71-76.	1.2	9
12	Biomechanical Assessment of Vertebroplasty Combined with Cement-Augmented Screw Fixation for Lumbar Burst Fractures: A Finite Element Analysis. Applied Sciences (Switzerland), 2020, 10, 2133.	2.5	7
13	Percutaneous pedicle screw placement under single dimensional fluoroscopy with a designed pedicle finder—a technical note and case series. Spine Journal, 2017, 17, 1373-1380.	1.3	6
14	Upper Body Posture Recognition Using Inertial Sensors and Recurrent Neural Networks. Applied Sciences (Switzerland), 2021, 11, 12101.	2.5	6
15	FINITE ELEMENT ANALYSIS OF CERVICAL SPINE WITH DIFFERENT CONSTRAINED TYPES OF TOTAL DISC REPLACEMENT. Journal of Mechanics in Medicine and Biology, 2014, 14, 1450038.	0.7	5
16	Incomplete insertion of pedicle screws in a standard construct reduces the fatigue life: A biomechanical analysis. PLoS ONE, 2019, 14, e0224699.	2.5	5
17	<i>IN VIVO</i> EVALUATION OF A NEW BIPHASIC CALCIUM PHOSPHATE BONE SUBSTITUTE IN RABBIT FEMUR DEFECTS MODEL. Biomedical Engineering - Applications, Basis and Communications, 2012, 24, 537-548.	0.6	4
18	Pull-Out Capability of a 3D Printed Threadless Suture Anchor with Rectangular Cross-Section: A Biomechanical Study. Applied Sciences (Switzerland), 2021, 11, 12128.	2.5	4

#	Article	IF	CITATIONS
19	Complete Femoral Nerve Palsy Following Traumatic Iliacus Hematoma. JBJS Case Connector, 2013, 3, e74.	0.3	3
20	Cutting Flute and Thread Design on Self-Tapping Pedicle Screws Influence the Insertion Torque and Pullout Strength. Applied Sciences (Switzerland), 2022, 12, 1956.	2.5	3
21	<i>IN VIVO</i> EVALUATION OF A NEW Î ² -TRICALCIUM PHOSPHATE BONE SUBSTITUTE IN A RABBIT FEMUR DEFECT MODEL. Biomedical Engineering - Applications, Basis and Communications, 2015, 27, 1550028.	0.6	1
22	Complete Femoral Nerve Palsy Following Traumatic Iliacus Hematoma: A Case Report and Literature Review. JBJS Case Connector, 2013, 3, e741-4.	0.3	0