Shao Zhenlu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/348177/publications.pdf

Version: 2024-02-01

30 papers	526 citations	687363 13 h-index	677142 22 g-index
30	30	30	352
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Controlling coal fires using the three-phase foam and water mist techniques in the Anjialing Open Pit Mine, China. Natural Hazards, 2015, 75, 1833-1852.	3.4	110
2	Theory and application of magnetic and self-potential methods in the detection of the Heshituoluogai coal fire, China. Journal of Applied Geophysics, 2014, 104, 64-74.	2.1	63
3	Detection, extinguishing, and monitoring of a coal fire in Xinjiang, China. Environmental Science and Pollution Research, 2018, 25, 26603-26616.	5.3	47
4	Electrical resistivity of coal-bearing rocks under high temperature and the detection of coal fires using electrical resistance tomography. Geophysical Journal International, 2016, 204, 1316-1331.	2.4	31
5	Synthesis and characterization of a temperatureâ€sensitive hydrogel based on sodium alginate and Nâ€isopropylacrylamide. Polymers for Advanced Technologies, 2015, 26, 1340-1345.	3.2	25
6	Novel authigenic gas foaming hydrogels for preventing coal spontaneous combustion. E-Polymers, 2015, 15, 361-368.	3.0	24
7	Thermal Behavior and Microscopic Characteristics of Water-soaked Coal Spontaneous Combustion. Combustion Science and Technology, 2022, 194, 636-654.	2.3	23
8	Induced polarization response of porous media with metallic particles â€" Part 6: The case of metals and semimetals. Geophysics, 2017, 82, E97-E110.	2.6	21
9	Study on the physicochemical characteristics and dust suppression performance of new type chemical dust suppressant for copper mine pavement. Environmental Science and Pollution Research, 2021, 28, 59640-59651.	5.3	21
10	Synthesis and characterization of temperature-sensitive hydrogels. E-Polymers, 2015, 15, 353-360.	3.0	20
11	The Influence of Water Immersion on the Physical and Chemical Structure of Coal. Combustion Science and Technology, 2022, 194, 1136-1154.	2.3	17
12	Study on the Oxidation Kinetics and Microreactivity of Water-Immersed Coal. ACS Omega, 2020, 5, 17287-17303.	3.5	15
13	Experimental study of the self-potential anomaly caused by coal fires. Journal of Applied Geophysics, 2017, 145, 124-132.	2.1	14
14	Induced polarization signature of coal seam fires. Geophysical Journal International, 2017, 208, 1313-1331.	2.4	13
15	Three-dimensional-imaging thermal surfaces of coal fires based on UAV thermal infrared data. International Journal of Remote Sensing, 2021, 42, 672-692.	2.9	11
16	Treatment of smouldering coal refuse piles: an application in China. Environmental Technology (United Kingdom), 2020, 41, 3105-3118.	2.2	10
17	Thermal Behavior and Characteristics of Functional Groups on Lignite Secondary Oxidation. Combustion Science and Technology, 2022, 194, 850-867.	2.3	9
18	Categorical modeling on electrical anomaly of room-and-pillar coal mine fires and application for field electrical resistivity tomography. Journal of Applied Geophysics, 2017, 136, 474-483.	2.1	8

#	Article	IF	CITATIONS
19	Entropy Weight-Logarithmic Fuzzy Multiobjective Programming Method for Evaluating Emergency Evacuation in Crowded Places: A Case Study of a University Teaching Building. IEEE Access, 2020, 8, 122997-123012.	4.2	8
20	A novel high polymer nanocomposite inhibitor for coal gangue spontaneous combustion prevention: A case study of Yangquan coal gangue in China. Fire and Materials, 2020, 44, 953-965.	2.0	8
21	Influence of Temperature Change on the Change Law of Free Radicals in Coal. ACS Omega, 2021, 6, 33685-33693.	3.5	8
22	Novel superâ€absorbent polymerâ€grafted tea polyphenol composite inhibitor for the prevention of coal spontaneous combustion. Fire and Materials, 2020, 44, 975-988.	2.0	7
23	Constructing 3-D Land Surface Temperature Model of Local Coal Fires Using UAV Thermal Images. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-9.	6.3	5
24	Mechanism of the dissolution of methane in the complex micellar system of NaOA/cyclohexane. Arabian Journal of Geosciences, 2019, 12, 1.	1.3	2
25	Recapitulation and Prospect of Research on Flow Field in Coal Mine Gob. Shock and Vibration, 2021, 2021, 1-24.	0.6	2
26	3D Localization of Coal Fires Based on Self-Potential Data: Sandbox Experiments. Pure and Applied Geophysics, 2021, 178, 4583-4603.	1.9	2
27	Investigation of methane-air explosions and its destruction at longwall coalface in underground coalmines. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2020, , 1-18.	2.3	1
28	Numerical Simulation of the Dust Production and Transportation Law of an Intermediate Mine Heap. ACS Omega, 2021, 6, 1623-1635.	3 . 5	1
29	Simulation of similar materials for dust migration in an intermediate mine heap. Environmental Progress and Sustainable Energy, 2021, 40, e13599.	2.3	0
30	Heat-Induced Electrical Variation of Water-Bearing Porous Rock in Coal Fire Area. Journal of Computational and Theoretical Nanoscience, 2016, 13, 5841-5848.	0.4	0