
Wataru Yamaguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/348175/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent Research Trend in Powder Process Technology for High-Performance Rare-Earth Permanent Magnets. KONA Powder and Particle Journal, 2023, 40, 74-93.	1.7	4
2	Novel Powder Processing Technologies for Production of Rare-earth Permanent Magnets. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2022, 69, S30-S37.	0.2	0
3	Novel powder processing technologies for production of rare-earth permanent magnets. Science and Technology of Advanced Materials, 2021, 22, 150-159.	6.1	14
4	Mechanism of anomalous α-Fe formation from stoichiometric Sm2Fe17 jet-milled powder during post-pulverization annealing. Acta Materialia, 2021, 213, 116981.	7.9	7
5	Influences of microstructure on macroscopic crystallinity and magnetic properties of Sm-Fe-N fine powder produced by jet-milling. Journal of Alloys and Compounds, 2021, 869, 159288.	5.5	13
6	Metal-coated Sm2Fe17N3 magnet powders with an oxide-free direct metal-metal interface. Journal of Magnetism and Magnetic Materials, 2020, 498, 166101.	2.3	11
7	Effects of nonmagnetic overlay metals on coercivity of Sm2Fe17N3 magnet powders. Journal of Magnetism and Magnetic Materials, 2020, 516, 167327.	2.3	14
8	Possibility of high-performance Sm2Fe17N3 sintered magnets by low-oxygen powder metallurgy process. Journal of Magnetism and Magnetic Materials, 2020, 506, 166811.	2.3	23
9	Role of Surface Iron Oxides in Coercivity Deterioration of Sm ₂ Fe ₁₇ N ₃ Magnet Associated with Low Temperature Sintering. Materials Transactions, 2019, 60, 479-483.	1.2	12
10	Coercivity Recovery Effect of Sm-Fe-Cu-Al Alloy on Sm2Fe17N3 Magnet. Journal of the Korean Physical Society, 2018, 72, 716-725.	0.7	2
11	Activation of N2 by isolated small tungsten clusters at room temperature. Chemical Physics Letters, 2017, 667, 267-271.	2.6	5
12	Anisotropic Sm2Fe17N3 sintered magnets without coercivity deterioration. AIP Advances, 2016, 6, .	1.3	47
13	Study of entropic characteristics of strongly correlated systems using VO2 as a model case. Physical Chemistry Chemical Physics, 2016, 18, 30824-30829.	2.8	4
14	Size-dependent Catalytic Activity of Platinum Nanoparticles for Aqueous-phase Reforming of Glycerol. Chemistry Letters, 2014, 43, 313-315.	1.3	7
15	Preparation of Electrocatalysts for Polymer Electrolyte Fuel Cell Cathodes From Au-Pt Core-Shell Nanoparticles Synthesized by Simultaneous Aqueous-Phase Reduction. Journal of Fuel Cell Science and Technology, 2013, 10, .	0.8	1
16	Reduction of N2 by supported tungsten clusters gives a model of the process by nitrogenase. Scientific Reports, 2012, 2, 407.	3.3	21
17	Depletion of CO oxidation activity of supported Au catalysts prepared from thiol-capped Au nanoparticles by sulfates formed at Au–titania boundaries: Effects of heat treatment conditions on catalytic activity. Journal of Catalysis, 2010, 270, 234-241.	6.2	36
18	δ and σ vs. π conflicting aromatic pentagonal ring of tungsten with a planar pentacoordinate carbon at the ring center. International Journal of Quantum Chemistry, 2010, 110, 1086-1091.	2.0	6

WATARU YAMAGUCHI

#	Article	IF	CITATIONS
19	Structures and CO oxidation activities of size-selected Au nanoparticles in mesoporous titania-coated silica aerogels. Applied Catalysis A: General, 2009, 364, 143-149.	4.3	31
20	A computational study on molecular adsorption states of nitrogen on a tungsten tetramer. Physical Chemistry Chemical Physics, 2009, 11, 943-949.	2.8	3
21	Adsorption states of dinitrogen on small tungsten nanoclusters. Chemical Physics Letters, 2008, 455, 261-264.	2.6	3
22	Low-Temperature Formation of Nitrous Oxide from Dinitrogen, Mediated by Supported Tungsten Nanoclusters. Journal of the American Chemical Society, 2007, 129, 6102-6103.	13.7	10
23	Geometries of small tungsten clusters. Chemical Physics, 2005, 316, 45-52.	1.9	20
24	Nitrogen adsorption on supported size-selected tungsten nanoclusters as studied by X-ray photoelectron and X-ray excited Auger electron spectroscopies. Chemical Physics Letters, 2003, 378, 521-525.	2.6	11
25	Fragmentation and ion-scattering in the low-energy collisions of small silver cluster ions (Agn+:â€,n=1â^'4) with a highly oriented pyrolytic graphite surface. Journal of Chemical Physics, 2000, 113, 3808-3813.	3.0	13
26	Surface-Induced Dissociation of Small Carbon Cluster Negative Ions (Cn-, n = 5â^'12):  Correlation between the Dissociation Patterns and Stability of Fragment Ionâ^'Neutral Pairs. Journal of Physical Chemistry B, 1999, 103, 5500-5504.	2.6	11
27	Reproducible superconducting gap on clean surfaces of BiSrCaCuO prepared by etching with a scanning tunneling microscope tip. Physica C: Superconductivity and Its Applications, 1998, 300, 26-32.	1.2	8
28	Cryogenic scanning tunneling microscopy/spectroscopy on the (110) surfaces of YBa2Cu3Oy epitaxial thin films. Physica C: Superconductivity and Its Applications, 1995, 242, 277-282.	1.2	21
29	Cryogenic scanning tunneling microscopy/spectroscopy on the (001) surfaces of YBa2Cu3Oyepitaxial thin films. Journal of Applied Physics, 1994, 75, 5227-5232.	2.5	31