Zoe K Shipton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3481679/publications.pdf

Version: 2024-02-01

59 papers

2,641 citations

279798 23 h-index 50 g-index

72 all docs 72 docs citations

times ranked

72

2313 citing authors

#	Article	IF	CITATIONS
1	Deformation bands in sandstone: a review. Journal of the Geological Society, 2007, 164, 755-769.	2.1	552
2	A conceptual model for the origin of fault damage zone structures in high-porosity sandstone. Journal of Structural Geology, 2003, 25, 333-344.	2.3	254
3	Fault tip displacement gradients and process zone dimensions. Journal of Structural Geology, 1998, 20, 983-997.	2.3	212
4	Structural controls on leakage from a natural CO2 geologic storage site: Central Utah, U.S.A Journal of Structural Geology, 2010, 32, 1768-1782.	2.3	158
5	Analysis of CO ₂ leakage through â€low-permeability' faults from natural reservoirs in the Colorado Plateau, east-central Utah. Geological Society Special Publication, 2004, 233, 43-58.	1.3	105
6	Pulses of carbon dioxide emissions from intracrustal faults following climatic warming. Nature Geoscience, 2012, 5, 352-358.	12.9	101
7	Pseudotachylytes: Rarely Generated, Rarely Preserved, or Rarely Reported?. Bulletin of the Seismological Society of America, 2009, 99, 382-388.	2.3	91
8	How thick is a fault? Fault displacement-thickness scaling revisited. Geophysical Monograph Series, 2006, , 193-198.	0.1	88
9	Inter-seasonal compressed-air energy storage using saline aquifers. Nature Energy, 2019, 4, 131-139.	39.5	84
10	Man-made versus natural CO2 leakage: A 400 k.y. history of an analogue for engineered geological storage of CO2. Geology, 2013, 41, 471-474.	4.4	81
11	He and Ne as tracers of natural CO2 migration up a fault from a deep reservoir. International Journal of Greenhouse Gas Control, 2011, 5, 1507-1516.	4.6	61
12	Scale-dependent influence of pre-existing basement shear zones on rift faulting: a case study from NE Brazil. Journal of the Geological Society, 2013, 170, 237-247.	2.1	47
13	Natural Leaking CO2-Charged Systems as Analogs for Failed Geologic Storage Reservoirs. , 2005, , 699-712.		42
14	Simulating brittle fault growth from linkage of preexisting structures. Journal of Geophysical Research, 2008, 113, .	3.3	42
15	The physical characteristics of a CO 2 seeping fault: The implications of fracture permeability for carbon capture and storage integrity. International Journal of Greenhouse Gas Control, 2017, 61, 49-60.	4.6	40
16	Meso-scale mixed-mode fracture modelling of reinforced concrete structures subjected to non-uniform corrosion. Engineering Fracture Mechanics, 2018, 199, 114-130.	4.3	40
17	Geologic evidence for multiple slip weakening mechanisms during seismic slip in crystalline rock. Journal of Geophysical Research, 2009, 114, .	3.3	38
18	How do we see fractures? Quantifying subjective bias in fracture data collection. Solid Earth, 2019, 10, 487-516.	2.8	38

#	Article	IF	CITATIONS
19	Strikeâ€slip fault terminations at seismogenic depths: The structure and kinematics of the Glacier Lakes fault, Sierra Nevada United States. Journal of Geophysical Research, 2008, 113, .	3.3	37
20	When There isn't a Right Answer: Interpretation and reasoning, key skills for twentyâ€first century geoscience. International Journal of Science Education, 2011, 33, 629-652.	1.9	36
21	Reducing the environmental impact of hydraulic fracturing through design optimisation of positive displacement pumps. Energy, 2016, 115, 1216-1233.	8.8	36
22	The depth of pseudotachylyte formation from detailed thermochronology and constraints on coseismic stress drop variability. Journal of Geophysical Research, 2012, 117, .	3.3	33
23	Increasing the quality of seismic interpretation. Interpretation, 2016, 4, T395-T402.	1.1	26
24	Modelling Rock Fracture Induced By Hydraulic Pulses. Rock Mechanics and Rock Engineering, 2021, 54, 3977-3994.	5.4	25
25	Microseismicity illuminates open fractures in the shallow crust. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	23
26	Simulating brittle fault evolution from networks of pre-existing joints within crystalline rock. Journal of Structural Geology, 2010, 32, 1742-1753.	2.3	22
27	How can we improve estimates of bulk fault zone hydraulic properties?. Geological Society Special Publication, 2008, 299, 231-237.	1.3	19
28	Reaction-induced porosity fingering: Replacement dynamic and porosity evolution in the KBr-KCl system. Geochimica Et Cosmochimica Acta, 2018, 232, 163-180.	3.9	19
29	Collapse processes in abandoned pillar and stall coal mines: Implications for shallow mine geothermal energy. Geothermics, 2020, 88, 101904.	3.4	19
30	Automated high accuracy, rapid beam hardening correction in X-Ray Computed Tomography of multi-mineral, heterogeneous core samples. Computers and Geosciences, 2019, 131, 144-157.	4.2	18
31	Zircon dissolution in a ductile shear zone, Monte Rosa granite gneiss, northern Italy. Mineralogical Magazine, 2008, 72, 971-986.	1.4	17
32	Brittle structures focused on subtle crustal heterogeneities: implications for flow in fractured rocks. Journal of the Geological Society, 2014, 171, 509-524.	2.1	17
33	Natural CO ₂ sites in Italy show the importance of overburden geopressure, fractures and faults for CO ₂ storage performance and risk management. Geological Society Special Publication, 2017, 458, 181-211.	1.3	16
34	Dilational fault zone architecture in a welded ignimbrite: The importance of mechanical stratigraphy. Journal of Structural Geology, 2013, 51, 156-166.	2.3	15
35	Along-strike fault core thickness variations of a fault in poorly lithified sediments, Miri (Malaysia). Journal of Structural Geology, 2018, 116, 189-206.	2.3	15
36	Effective crustal permeability controls fault evolution: An integrated structural, mineralogical and isotopic study in granitic gneiss, Monte Rosa, northern Italy. Tectonophysics, 2016, 690, 160-173.	2.2	12

#	Article	IF	CITATIONS
37	Measurement of diesel combustion-related air pollution downwind of an experimental unconventional natural gas operations site. Atmospheric Environment, 2018, 189, 30-40.	4.1	12
38	Stress, faulting, fracturing and seismicity: the legacy of Ernest Masson Anderson. Geological Society Special Publication, 2012, 367, 1-6.	1.3	11
39	Fault zone hydrogeology: introduction to the special issue. Geofluids, 2016, 16, 655-657.	0.7	11
40	Fault fictions: systematic biases in the conceptualization of fault-zone architecture. Geological Society Special Publication, 2020, 496, 125-143.	1.3	11
41	Structural controls on the location and distribution of CO2 emission at a natural CO2 spring in Daylesford, Australia. International Journal of Greenhouse Gas Control, 2019, 84, 36-46.	4.6	10
42	Seismic slip on the west flank of the Upper Rhine Graben (France–Germany): evidence from tectonic morphology and cataclastic deformation bands. Geological Society Special Publication, 2017, 432, 147-161.	1.3	9
43	Subcore Scale Fluid Flow Behavior in a Sandstone With Cataclastic Deformation Bands. Water Resources Research, 2020, 56, e2019WR026715.	4.2	9
44	The growth of faults and fracture networks in a mechanically evolving, mechanically stratified rock mass: a case study from Spireslack Surface Coal Mine, Scotland. Solid Earth, 2020, 11, 2119-2140.	2.8	9
45	Repeated reactivation of clogged permeable pathways in epithermal gold deposits: Kestanelik epithermal vein system, NW Turkey. Journal of the Geological Society, 2018, 175, 509-524.	2.1	8
46	Fault seal behaviour in Permian Rotliegend reservoir sequences: case studies from the Dutch Southern North Sea. Geological Society Special Publication, 2020, 496, 9-38.	1.3	7
47	Mixed-Mode Fracture Modelling of the Near-Wellbore Interaction Between Hydraulic Fracture and Natural Fracture. Rock Mechanics and Rock Engineering, 2022, 55, 5433-5452.	5.4	7
48	Detailed internal structure and along-strike variability of the core of a plate boundary fault: the Highland Boundary fault, Scotland. Journal of the Geological Society, 2020, 177, 283-296.	2.1	6
49	Anatomy of reservoir-scale normal faults in central Utah: Stratigraphic controls and implications for fault zone evolution and fluid flow., 2005,, 261-282.		5
50	Mini thief zones: Subcentimeter sedimentary features enhance fracture connectivity in shales. AAPG Bulletin, 2019, 103, 951-971.	1.5	4
51	Geological and mineralization characteristics of the Kestanelik epithermal Au-Ag deposit in the Tethyan Metallogenic Belt, NW Turkey. Geosciences Journal, 2020, 24, 407-424.	1.2	4
52	Extreme capillary heterogeneities and in situ fluid compartmentalization due to clusters of deformation bands in sandstones. International Journal of Greenhouse Gas Control, 2021, 106, 103280.	4.6	4
53	Detection of Weak Seismic Signals in Noisy Environments from Unfiltered, Continuous Passive Seismic Recordings. Bulletin of the Seismological Society of America, 2018, 108, 2993-3004.	2.3	3
54	Microseismic Events Cause Significant pH Drops in Groundwater. Geophysical Research Letters, 2021, 48, e2020GL089885.	4.0	3

ZOE K SHIPTON

#	Article	IF	CITATIONS
55	Fracking bad language – hydraulic fracturing and earthquake risks. Geoscience Communication, 2021, 4, 303-327.	0.9	3
56	Improving earthquake ground-motion predictions for the North Sea. Journal of Seismology, 2020, 24, 343-362.	1.3	2
57	Comment on â€~Repurposing Hydrocarbon Wells for Geothermal Use in the UK: The Onshore Fields with the Greatest Potential. Watson et al. (2020)'. Energies, 2020, 13, 6373.	3.1	1
58	Role of Subsurface Geo-Energy Pilot and Demonstration Sites in Delivering Net Zero. Earth Science, Systems and Society, 0, 2, .	0.0	1
59	Discussion on â€Borehole temperature log from the Glasgow Geothermal Energy Research Field Site: a record of past changes to ground surface temperature caused by urban development', Scottish Journal of Geology, 56, 134-152, https://doi.org/10.1144/sjg2019-033. Scottish Journal of Geology, 2021, 57, sig2020-014.	0.1	0