Francesco Granata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3481621/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evapotranspiration evaluation models based on machine learning algorithms—A comparative study. Agricultural Water Management, 2019, 217, 303-315.	5.6	195
2	Machine Learning Algorithms for the Forecasting of Wastewater Quality Indicators. Water (Switzerland), 2017, 9, 105.	2.7	141
3	Support Vector Regression for Rainfall-Runoff Modeling in Urban Drainage: A Comparison with the EPA's Storm Water Management Model. Water (Switzerland), 2016, 8, 69.	2.7	111
4	Simultaneous nitrification, denitrification and phosphorus removal in a continuous-flow moving bed biofilm reactor alternating microaerobic and aerobic conditions. Bioresource Technology, 2020, 310, 123453.	9.6	93
5	Forecasting evapotranspiration in different climates using ensembles of recurrent neural networks. Agricultural Water Management, 2021, 255, 107040.	5.6	86
6	Groundwater level prediction in Apulia region (Southern Italy) using NARX neural network. Environmental Research, 2020, 190, 110062.	7.5	85
7	Shortcut nitrification-denitrification and biological phosphorus removal in acetate- and ethanol-fed moving bed biofilm reactors under microaerobic/aerobic conditions. Bioresource Technology, 2021, 330, 124958.	9.6	69
8	Intravoxel incoherent motion (IVIM) in diffusion-weighted imaging (DWI) for Hepatocellular carcinoma: correlation with histologic grade. Oncotarget, 2016, 7, 79357-79364.	1.8	68
9	Groundwater level prediction using machine learning algorithms in a drought-prone area. Neural Computing and Applications, 2022, 34, 10751-10773.	5.6	64
10	Artificial intelligence based approaches to evaluate actual evapotranspiration in wetlands. Science of the Total Environment, 2020, 703, 135653.	8.0	60
11	Hydraulics of Circular Drop Manholes. Journal of Irrigation and Drainage Engineering - ASCE, 2011, 137, 102-111.	1.0	59
12	Effect of carbon-to-nitrogen ratio on simultaneous nitrification denitrification and phosphorus removal in a microaerobic moving bed biofilm reactor. Journal of Environmental Management, 2019, 250, 109518.	7.8	54
13	Early radiological assessment of locally advanced pancreatic cancer treated with electrochemotherapy. World Journal of Gastroenterology, 2017, 23, 4767.	3.3	53
14	Artificial Intelligence models for prediction of the tide level in Venice. Stochastic Environmental Research and Risk Assessment, 2021, 35, 2537-2548.	4.0	43
15	Diagnostic accuracy of magnetic resonance, computed tomography and contrast enhanced ultrasound in radiological multimodality assessment of peribiliary liver metastases. PLoS ONE, 2017, 12, e0179951.	2.5	42
16	Machine Learning Models for Spring Discharge Forecasting. Geofluids, 2018, 2018, 1-13.	0.7	38
17	Multidetector computer tomography in the pancreatic adenocarcinoma assessment: an update. Infectious Agents and Cancer, 2016, 11, 57.	2.6	34
18	Machine learning methods for wastewater hydraulics. Flow Measurement and Instrumentation, 2017, 57, 1-9.	2.0	33

FRANCESCO GRANATA

#	Article	IF	CITATIONS
19	Air-water flows in circular drop manholes. Urban Water Journal, 2015, 12, 477-487.	2.1	31
20	Forecasting of Extreme Storm Tide Events Using NARX Neural Network-Based Models. Atmosphere, 2021, 12, 512.	2.3	31
21	Tide Prediction in the Venice Lagoon Using Nonlinear Autoregressive Exogenous (NARX) Neural Network. Water (Switzerland), 2021, 13, 1173.	2.7	31
22	Probabilistic Models for the Peak Residential Water Demand. Water (Switzerland), 2017, 9, 417.	2.7	29
23	Optimal energy recovery by means of pumps as turbines (PATs) for improved WDS management. Water Science and Technology: Water Supply, 2018, 18, 1365-1374.	2.1	26
24	A stochastic model for daily residential water demand. Water Science and Technology: Water Supply, 2016, 16, 1753-1767.	2.1	25
25	Flow-improving elements in circular drop manholes. Journal of Hydraulic Research/De Recherches Hydrauliques, 2014, 52, 347-355.	1.7	24
26	Prediction of spring flows using nonlinear autoregressive exogenous (NARX) neural network models. Environmental Monitoring and Assessment, 2021, 193, 350.	2.7	24
27	Dropshaft cascades in urban drainage systems. Water Science and Technology, 2016, 73, 2052-2059.	2.5	23
28	A stochastic approach for the water demand of residential end users. Urban Water Journal, 2016, 13, 569-582.	2.1	22
29	Novel Approach for Side Weirs in Supercritical Flow. Journal of Irrigation and Drainage Engineering - ASCE, 2013, 139, 672-679.	1.0	21
30	Radiological assessment of anal cancer: an overview and update. Infectious Agents and Cancer, 2016, 11, 52.	2.6	20
31	Diagnostic performance of magnetic resonance imaging and 3D endoanal ultrasound in detection, staging and assessment post treatment, in anal cancer. Oncotarget, 2017, 8, 22980-22990.	1.8	20
32	Integrated Optimal Cost and Pressure Management for Water Distribution Systems. Procedia Engineering, 2014, 70, 1659-1668.	1.2	19
33	River flow rate prediction in the Des Moines watershed (Iowa, USA): a machine learning approach. Stochastic Environmental Research and Risk Assessment, 2022, 36, 3835-3855.	4.0	19
34	Equivalent Discharge Coefficient of Side Weirs in Circular Channel—A Lazy Machine Learning Approach. Water (Switzerland), 2019, 11, 2406.	2.7	18
35	An Ensemble Neural Network Model to Forecast Drinking Water Consumption. Journal of Water Resources Planning and Management - ASCE, 2022, 148, .	2.6	16
36	Deformation of Air Bubbles Near a Plunging Jet Using a Machine Learning Approach. Applied Sciences (Switzerland), 2020, 10, 3879.	2.5	12

FRANCESCO GRANATA

#	ARTICLE	IF	CITATIONS
37	Precipitation Forecasting in Northern Bangladesh Using a Hybrid Machine Learning Model. Sustainability, 2022, 14, 2663.	3.2	12
38	Optimal Water Supply System Management by Leakage Reduction and Energy Recovery. Procedia Engineering, 2014, 89, 573-580.	1.2	11
39	Two-Phase PIV-LIF Measurements in a Submerged Bubbly Water Jet. Journal of Hydraulic Engineering, 2019, 145, .	1.5	11
40	A nonlinear autoregressive exogenous (NARX) model to predict nitrate concentration in rivers. Environmental Science and Pollution Research, 2022, 29, 40623-40642.	5.3	10
41	Microplastics in Combined Sewer Overflows: An Experimental Study. Journal of Marine Science and Engineering, 2021, 9, 1415.	2.6	9
42	A shadowgraphy approach for the 3D Lagrangian description of bubbly flows. Measurement Science and Technology, 2020, 31, 105301.	2.6	8
43	A flow field characterization in a circular channel along a side weir. Flow Measurement and Instrumentation, 2016, 52, 92-100.	2.0	7
44	Air Entrainment in Drop Shafts: A Novel Approach Based on Machine Learning Algorithms and Hybrid Models. Fluids, 2022, 7, 20.	1.7	7
45	Hybrid Machine Learning Models for Soil Saturated Conductivity Prediction. Water (Switzerland), 2022, 14, 1729.	2.7	7
46	The Overall Pulse Model for Water Demand of Aggregated Residential Users. Procedia Engineering, 2017, 186, 483-490.	1.2	4
47	Generation of Water Demand Time Series through Spline Curves. Journal of Water Resources Planning and Management - ASCE, 2020, 146, .	2.6	4
48	The Overall Pulse Model to Predict the End User Water Demand. Procedia Engineering, 2014, 89, 942-949.	1.2	3
49	Discussion of "Hydraulic Characteristics of a Drop Square Manhole with a Downstream Control Gate―by Rita F. Carvalho and Jorge Leandro. Journal of Irrigation and Drainage Engineering - ASCE, 2013, 139, 593-594.	1.0	2
50	Closure to "Novel Approach for Side Weirs in Supercritical Flow―by Francesco Granata, Giovanni de Marinis, Rudy Gargano, and Carla Tricarico. Journal of Irrigation and Drainage Engineering - ASCE, 2014, 140, 07014026.	1.0	0
51	Probability of Null Water Demand Characterization. , 0, , .		0