
Zheye Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3481548/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	One-Pot Self-Assembled Three-Dimensional TiO ₂ -Graphene Hydrogel with Improved Adsorption Capacities and Photocatalytic and Electrochemical Activities. ACS Applied Materials & Interfaces, 2013, 5, 2227-2233.	8.0	383
2	Facile Synthesis of 3D MnO ₂ –Graphene and Carbon Nanotube–Graphene Composite Networks for Highâ€Performance, Flexible, Allâ€5olidâ€State Asymmetric Supercapacitors. Advanced Energy Materials, 2014, 4, 1400064.	19.5	360
3	Freestanding Graphene Paper Supported Three-Dimensional Porous Graphene–Polyaniline Nanocomposite Synthesized by Inkjet Printing and in Flexible All-Solid-State Supercapacitor. ACS Applied Materials & Interfaces, 2014, 6, 16312-16319.	8.0	312
4	Orbital coupling of hetero-diatomic nickel-iron site for bifunctional electrocatalysis of CO2 reduction and oxygen evolution. Nature Communications, 2021, 12, 4088.	12.8	259
5	Hierarchically structured MnO ₂ /graphene/carbon fiber and porous graphene hydrogel wrapped copper wire for fiber-based flexible all-solid-state asymmetric supercapacitors. Journal of Materials Chemistry A, 2015, 3, 11215-11223.	10.3	235
6	Facile and Green Synthesis of Palladium Nanoparticles-Graphene-Carbon Nanotube Material with High Catalytic Activity. Scientific Reports, 2013, 3, 2527.	3.3	231
7	Atomically Dispersed Cobalt Trifunctional Electrocatalysts with Tailored Coordination Environment for Flexible Rechargeable Zn–Air Battery and Selfâ€Driven Water Splitting. Advanced Energy Materials, 2020, 10, 2002896.	19.5	210
8	Well-Ordered Oxygen-Deficient CoMoO ₄ and Fe ₂ O ₃ Nanoplate Arrays on 3D Graphene Foam: Toward Flexible Asymmetric Supercapacitors with Enhanced Capacitive Properties. ACS Applied Materials & Interfaces, 2017, 9, 6044-6053.	8.0	180
9	Advanced solid-state asymmetric supercapacitors based on 3D graphene/MnO ₂ and graphene/polypyrrole hybrid architectures. Journal of Materials Chemistry A, 2015, 3, 12828-12835.	10.3	160
10	Confined-interface-directed synthesis of Palladium single-atom catalysts on graphene/amorphous carbon. Applied Catalysis B: Environmental, 2018, 225, 291-297.	20.2	159
11	Scalable Synthesis of Freestanding Sandwich-structured Graphene/Polyaniline/Graphene Nanocomposite Paper for Flexible All-Solid-State Supercapacitor. Scientific Reports, 2015, 5, 9359.	3.3	147
12	Fiber-based multifunctional nickel phosphide electrodes for flexible energy conversion and storage. Journal of Materials Chemistry A, 2016, 4, 9691-9699.	10.3	136
13	Functionalized carbonaceous fibers for high performance flexible all-solid-state asymmetric supercapacitors. Journal of Materials Chemistry A, 2015, 3, 11817-11823.	10.3	135
14	Bifunctional Nanocatalyst Based on Three-Dimensional Carbon Nanotube–Graphene Hydrogel Supported Pd Nanoparticles: One-Pot Synthesis and Its Catalytic Properties. ACS Applied Materials & Interfaces, 2014, 6, 21035-21040.	8.0	117
15	Encapsulating Pd Nanoparticles in Double-Shelled Graphene@Carbon Hollow Spheres for Excellent Chemical Catalytic Property. Scientific Reports, 2014, 4, 4053.	3.3	106
16	Facile synthesis of N-doped porous carbon encapsulated bimetallic PdCo as a highly active and durable electrocatalyst for oxygen reduction and ethanol oxidation. Journal of Materials Chemistry A, 2017, 5, 10876-10884.	10.3	93
17	Oxygen vacancies engineered CoMoO4 nanosheet arrays as efficient bifunctional electrocatalysts for overall water splitting. Journal of Catalysis, 2020, 381, 44-52.	6.2	83
18	Ultrafine palladium nanoparticles supported on nitrogen-doped carbon microtubes as a high-performance organocatalyst. Carbon, 2017, 119, 326-331.	10.3	82

ZHEYE ZHANG

#	Article	IF	CITATIONS
19	Template-Sacrificing Synthesis of Well-Defined Asymmetrically Coordinated Single-Atom Catalysts for Highly Efficient CO ₂ Electrocatalytic Reduction. ACS Nano, 2022, 16, 2110-2119.	14.6	82
20	Large-scale printing synthesis of transition metal phosphides encapsulated in N, P co-doped carbon as highly efficient hydrogen evolution cathodes. Nano Energy, 2018, 51, 223-230.	16.0	79
21	Naturally derived honeycomb-like N,S-codoped hierarchical porous carbon with MS ₂ (M =) Tj ETQq1	1 0.7843 5.6	14.rgBT /0ve 76
22	One-Pot Synthesis of Three-Dimensional Graphene/Carbon Nanotube/SnO ₂ Hybrid Architectures with Enhanced Lithium Storage Properties. ACS Applied Materials & Interfaces, 2015, 7, 17963-17968.	8.0	75
23	Ultrafine Pd Nanoparticles Encapsulated in Microporous Co ₃ O ₄ Hollow Nanospheres for In Situ Molecular Detection of Living Cells. ACS Applied Materials & Interfaces, 2015, 7, 5583-5590.	8.0	69
24	Nitrogen-enriched polydopamine analogue-derived defect-rich porous carbon as a bifunctional metal-free electrocatalyst for highly efficient overall water splitting. Journal of Materials Chemistry A, 2017, 5, 17064-17072.	10.3	66
25	Scalable fabrication of ultrathin free-standing graphene nanomesh films for flexible ultrafast electrochemical capacitors with AC line-filtering performance. Nano Energy, 2018, 50, 182-191.	16.0	66
26	One-step synthesis of nickel phosphide nanowire array supported on nickel foam with enhanced electrocatalytic water splitting performance. RSC Advances, 2016, 6, 107859-107864.	3.6	65
27	Facile Synthesis of Heterostructured Nickel/Nickel Oxide Wrapped Carbon Fiber: Flexible Bifunctional Gas-Evolving Electrode for Highly Efficient Overall Water Splitting. ACS Sustainable Chemistry and Engineering, 2017, 5, 529-536.	6.7	63
28	Graphene quantum dots as full-color and stimulus responsive fluorescence ink for information encryption. Journal of Colloid and Interface Science, 2020, 579, 307-314.	9.4	63
29	Starvation, Ferroptosis, and Prodrug Therapy Synergistically Enabled by a Cytochrome c Oxidase like Nanozyme. Advanced Materials, 2022, 34, e2203236.	21.0	49
30	PtAu alloy nanoflowers on 3D porous ionic liquid functionalized graphene-wrapped activated carbon fiber as a flexible microelectrode for near-cell detection of cancer. NPG Asia Materials, 2016, 8, e337-e337.	7.9	46
31	Graphene quantum dots assisted exfoliation of atomically-thin 2D materials and as-formed 0D/2D van der Waals heterojunction for HER. Carbon, 2021, 184, 554-561.	10.3	43
32	An ultra-low Pd loading nanocatalyst with efficient catalytic activity. Nanoscale, 2015, 7, 5510-5515.	5.6	34
33	Scalable synthesis of a Pd nanoparticle loaded hierarchically porous graphene network through multiple synergistic interactions. Chemical Communications, 2015, 51, 8357-8360.	4.1	34
34	Self-Supported Biocarbon-Fiber Electrode Decorated with Molybdenum Carbide Nanoparticles for Highly Active Hydrogen-Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 22604-22611.	8.0	34
35	Maximizing the utility of single atom electrocatalysts on a 3D graphene nanomesh. Journal of Materials Chemistry A, 2019, 7, 15575-15579.	10.3	34
36	MOFâ€Derived Copper Nitride/Phosphide Heterostructure Coated by Multiâ€Doped Carbon as Electrocatalyst for Efficient Water Splitting and Neutralâ€pH Hydrogen Evolution Reaction. ChemElectroChem, 2020, 7, 289-298.	3.4	30

ZHEYE ZHANG

#	Article	IF	CITATIONS
37	Substrate Engineering for CVD Growth of Single Crystal Graphene. Small Methods, 2021, 5, e2001213.	8.6	25
38	Pyridinic nitrogen-rich carbon nanocapsules from a bioinspired polydopamine derivative for highly efficient electrocatalytic oxygen reduction. Journal of Materials Chemistry A, 2017, 5, 519-523.	10.3	24
39	<i>In situ</i> growth of Fe(<scp>ii</scp>)-MOF-74 nanoarrays on nickel foam as an efficient electrocatalytic electrode for water oxidation: a mechanistic study on valence engineering. Chemical Communications, 2019, 55, 11307-11310.	4.1	23
40	General and facile synthesis of hollow metal oxide nanoparticles coupled with graphene nanomesh architectures for highly efficient lithium storage. Journal of Materials Chemistry A, 2018, 6, 23856-23864.	10.3	17
41	Substrate-Induced Synthesis of Nitrogen-Doped Holey Graphene Nanocapsules for Advanced Metal-Free Bifunctional Electrocatalysts. Particle and Particle Systems Characterization, 2017, 34, 1600207.	2.3	15
42	Multifunctional magnetic graphene hybrid architectures: one-pot synthesis and their applications as organic pollutants adsorbents and supercapacitor electrodes. RSC Advances, 2015, 5, 83480-83485.	3.6	14
43	Highâ€Performance Flexible Asymmetric Supercapacitors Facilitated by Nâ€doped Porous Vertical Graphene Nanomesh Arrays. ChemElectroChem, 2020, 7, 406-413.	3.4	12
44	Facile Oneâ€Step Synthesis of Mesoporous Tin Oxide Hollow Spheres and Their Functionalized Nanoreactor Variants. Particle and Particle Systems Characterization, 2016, 33, 519-523.	2.3	6
45	A nonchlorinated solvent-processed polymer semiconductor for high-performance ambipolar transistors. National Science Review, 2022, 9, nwab145.	9.5	5
46	Singleâ€Atom Catalysts: Atomically Dispersed Cobalt Trifunctional Electrocatalysts with Tailored Coordination Environment for Flexible Rechargeable Zn–Air Battery and Selfâ€Driven Water Splitting (Adv. Energy Mater. 48/2020). Advanced Energy Materials, 2020, 10, 2070195.	19.5	4
47	Catalysts Encapsulated in Nanostructured Carbon Systems. , 2017, , 71-122.		1
48	Highâ€Performance Flexible Asymmetric Supercapacitors Facilitated by Nâ€doped Porous Vertical Graphene Nanomesh Arrays. ChemElectroChem, 2020, 7, 366-366.	3.4	0