Jessika Rojas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3481522/publications.pdf Version: 2024-02-01

IFSSIKA ROIAS

#	Article	IF	CITATIONS
1	Facile radiolytic synthesis of ruthenium nanoparticles on graphene oxide and carbon nanotubes. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2016, 205, 28-35.	1.7	172
2	Production of palladium nanoparticles supported on multiwalled carbon nanotubes by gamma irradiation. Radiation Physics and Chemistry, 2012, 81, 16-21.	1.4	55
3	Synthesis and characterization of lanthanum phosphate nanoparticles as carriers for 223Ra and 225Ra for targeted alpha therapy. Nuclear Medicine and Biology, 2015, 42, 614-620.	0.3	54
4	Supported transition metal nanomaterials: Nanocomposites synthesized by ionizing radiation. Radiation Physics and Chemistry, 2017, 132, 52-64.	1.4	51
5	Mechanical and chemical properties of PVD and cold spray Cr-coatings on Zircaloy-4. Journal of Nuclear Materials, 2020, 541, 152420.	1.3	48
6	Synthesis of nickel nanoparticles on multi-walled carbon nanotubes by gamma irradiation. Radiation Physics and Chemistry, 2013, 89, 51-56.	1.4	29
7	Single step radiolytic synthesis of iridium nanoparticles onto graphene oxide. Applied Surface Science, 2015, 357, 2087-2093.	3.1	25
8	Synthesis of rhenium oxide nanoparticles (RexOy) by gamma irradiation. Radiation Physics and Chemistry, 2014, 99, 1-5.	1.4	23
9	Gadolinium vanadate nanocrystals as carriers of α-emitters (225Ac, 227Th) and contrast agents. Journal of Applied Physics, 2019, 125, .	1.1	22
10	Multifunctional GdVO ₄ :Eu core–shell nanoparticles containing ²²⁵ Ac for targeted alpha therapy and molecular imaging. Journal of Materials Chemistry B, 2018, 6, 7985-7997.	2.9	21
11	Gamma ray attenuation of hafnium dioxide- and tungsten trioxide-epoxy resin composites. Journal of Radioanalytical and Nuclear Chemistry, 2019, 322, 707-716.	0.7	21
12	Functionalizing Fe3O4@SiO2 with a novel mercaptobenzothiazole derivative: Application to trace fluorometric and colorimetric detection of Fe3+ in water. Applied Surface Science, 2019, 487, 876-888.	3.1	19
13	Au@TiO2 nanocomposites synthesized by X-ray radiolysis as potential radiosensitizers. Applied Surface Science, 2018, 427, 702-710.	3.1	17
14	Radiation-assisted synthesis of iridium and rhodium nanoparticles supported on polyvinylpyrrolidone. Journal of Radioanalytical and Nuclear Chemistry, 2014, 302, 555-561.	0.7	15
15	Enhanced flow boiling heat transfer on chromium coated zircaloy-4 using cold spray technique for accident tolerant fuel (ATF) materials. Applied Thermal Engineering, 2021, 185, 116347.	3.0	15
16	Radiolytic synthesis of iridium nanoparticles onto carbon nanotubes. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	13
17	Effect of surface characteristics and environmental aging on wetting of Cr-coated Zircaloy-4 accident tolerant fuel cladding material. Journal of Nuclear Materials, 2020, 535, 152163.	1.3	12
18	X-ray radiation enhancement of gold- TiO2 nanocomposites. Applied Surface Science, 2019, 480, 1147-1155.	3.1	11

Jessika Rojas

#	Article	IF	CITATIONS
19	Synthesis and characterization of intrinsically radiolabeled lanthanide phosphate nanoparticles toward biomedical and environmental applications. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	10
20	Quantitative encapsulation and retention of ²²⁷ Th and decay daughters in core–shell lanthanum phosphate nanoparticles. Nanoscale, 2020, 12, 9744-9755.	2.8	10
21	Self-separation of the adsorbent after recovery of rare-earth metals: Designing a novel non-wettable polymer. Separation and Purification Technology, 2021, 259, 118152.	3.9	10
22	Enhanced X-RAYS degradation of methylene blue in the presence of gold microspheres. Radiation Physics and Chemistry, 2019, 156, 73-80.	1.4	8
23	New concept of radiolytic synthesis of gold nanoparticles in continuous flow. Radiation Physics and Chemistry, 2021, 188, 109614.	1.4	8
24	Highly magnetic Co nanoparticles fabricated by X-ray radiolysis. Radiation Physics and Chemistry, 2018, 144, 111-115.	1.4	7
25	Tailoring the magnetic properties of FexCo(1â^'x) nanopowders prepared by a polyol process. Dalton Transactions, 2017, 46, 10364-10373.	1.6	6
26	Radiocatalytic performance of oxide-based nanoparticles for targeted therapy and water remediation. Radiation Physics and Chemistry, 2020, 173, 108871.	1.4	6
27	The effect of X-ray induced oxygen defects on the photocatalytic properties of titanium dioxide nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 409, 113138.	2.0	6
28	Encapsulation and retention of ²²⁵ Ac, ²²³ Ra, ²²⁷ Th, and decay daughters in zircon-type gadolinium vanadate nanoparticles. Radiochimica Acta, 2020, 108, 967-977.	0.5	5
29	Evolution of Microstructure and Surface Characteristics of FeCrAl alloys when Subjected to Flow Boiling Testing. Journal of Nuclear Materials, 2021, 557, 153269.	1.3	4
30	X-ray synthesis of noble metal nanoparticles onto 2D and 3D graphene oxide supports. Applied Surface Science, 2020, 528, 146313.	3.1	2
31	Encapsulation of 67Cu therapeutic radiometal in luminescent lanthanide phosphate core and core-shell nanoparticles. Applied Radiation and Isotopes, 2022, 186, 110296.	0.7	1
32	Influence of Synthesis Parameters on Morphology, Crystalline Structure and Colloidal Stability of Core and Core-Shell LaPO4Nanoparticles. , 2016, , 57-69.		0
33	Growth Kinetics of Lanthanum Phosphate Core/Shell Nanoparticles Doped With ce-Tb and Eu. , 0, , 45-66.		0