
Qiang Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3481463/publications.pdf Version: 2024-02-01

OLANC PENC

#	Article	IF	CITATIONS
1	Nanomaterials-based photothermal therapy and its potentials in antibacterial treatment. Journal of Controlled Release, 2020, 328, 251-262.	9.9	325
2	Preformed albumin corona, a protective coating for nanoparticles based drug delivery system. Biomaterials, 2013, 34, 8521-8530.	11.4	293
3	Exosomes: The next generation of endogenous nanomaterials for advanced drug delivery and therapy. Acta Biomaterialia, 2019, 86, 1-14.	8.3	275
4	Graphene-based nanomaterials and their potentials in advanced drug delivery and cancer therapy. Journal of Controlled Release, 2018, 286, 64-73.	9.9	199
5	Graphene-based nanomaterials: the promising active agents for antibiotics-independent antibacterial applications. Journal of Controlled Release, 2019, 307, 16-31.	9.9	167
6	Independent effect of polymeric nanoparticle zeta potential/surface charge, onÂtheir cytotoxicity and affinity to cells. Cell Proliferation, 2015, 48, 465-474.	5.3	161
7	Protein-gold nanoparticle interactions and their possible impact on biomedical applications. Acta Biomaterialia, 2017, 55, 13-27.	8.3	139
8	A rapid-acting, long-acting insulin formulation based on a phospholipid complex loaded PHBHHx nanoparticles. Biomaterials, 2012, 33, 1583-1588.	11.4	129
9	Injectable and biodegradable thermosensitive hydrogels loaded with PHBHHx nanoparticles for the sustained and controlled release of insulin. Acta Biomaterialia, 2013, 9, 5063-5069.	8.3	126
10	The potential of protein–nanomaterial interaction for advanced drug delivery. Journal of Controlled Release, 2016, 225, 121-132.	9.9	111
11	Insight into the Interaction of Graphene Oxide with Serum Proteins and the Impact of the Degree of Reduction and Concentration. ACS Applied Materials & Interfaces, 2015, 7, 13367-13374.	8.0	106
12	The protein corona and its effects on nanoparticle-based drug delivery systems. Acta Biomaterialia, 2021, 129, 57-72.	8.3	95
13	Peroxisome Proliferator-Activated Receptor-γ: Master Regulator of Adipogenesis and Obesity. Current Stem Cell Research and Therapy, 2016, 11, 282-289.	1.3	90
14	Polydopamine-based nanomaterials and their potentials in advanced drug delivery and therapy. Colloids and Surfaces B: Biointerfaces, 2021, 199, 111502.	5.0	86
15	Tetrahedral DNA Nanostructure: A Potential Promoter for Cartilage Tissue Regeneration via Regulating Chondrocyte Phenotype and Proliferation. Small, 2017, 13, 1602770.	10.0	83
16	Self-Assembled Tetrahedral DNA Nanostructures Promote Adipose-Derived Stem Cell Migration via IncRNA XLOC 010623 and RHOA/ROCK2 Signal Pathway. ACS Applied Materials & Interfaces, 2016, 8, 19353-19363.	8.0	80
17	Mechanisms of Phospholipid Complex Loaded Nanoparticles Enhancing the Oral Bioavailability. Molecular Pharmaceutics, 2010, 7, 565-575.	4.6	77
18	Preparation, characterization, and in vivo evaluation of a self-nanoemulsifying drug delivery system (SNEDDS) loaded with morin-phospholipid complex. International Journal of Nanomedicine, 2011, 6, 3405.	6.7	72

QIANG PENG

#	Article	IF	CITATIONS
19	Understanding the sheet size-antibacterial activity relationship of graphene oxide and the nano-bio interaction-based physical mechanisms. Colloids and Surfaces B: Biointerfaces, 2020, 191, 111009.	5.0	67
20	Functionalized graphene oxide nanosheets with unique three-in-one properties for efficient and tunable antibacterial applications. Nano Research, 2021, 14, 185-190.	10.4	63
21	Potentials of nanotechnology in treatment of methicillin-resistant Staphylococcus aureus. European Journal of Medicinal Chemistry, 2021, 213, 113056.	5.5	60
22	Size-dependent photothermal antibacterial activity of Ti C T MXene nanosheets against methicillin-resistant Staphylococcus aureus. Journal of Colloid and Interface Science, 2022, 617, 533-541.	9.4	58
23	Understanding the Biomedical Effects of the Self-Assembled Tetrahedral DNA Nanostructure on Living Cells. ACS Applied Materials & Interfaces, 2016, 8, 12733-12739.	8.0	56
24	Enhanced biostability of nanoparticle-based drug delivery systems by albumin corona. Nanomedicine, 2015, 10, 205-214.	3.3	55
25	Effect of tetrahedral DNA nanostructures on osteogenic differentiation of mesenchymal stem cells via activation of the Wnt/β-catenin signaling pathway. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1809-1819.	3.3	55
26	Digestive Enzyme Corona Formed in the Gastrointestinal Tract and Its Impact on Epithelial Cell Uptake of Nanoparticles. Biomacromolecules, 2019, 20, 1789-1797.	5.4	55
27	The UV absorption of graphene oxide is size-dependent: possible calibration pitfalls. Mikrochimica Acta, 2019, 186, 207.	5.0	53
28	Electrospun Fibers for Dental and Craniofacial Applications. Current Stem Cell Research and Therapy, 2014, 9, 187-195.	1.3	50
29	Bacterial outer membrane vesicles as potential biological nanomaterials for antibacterial therapy. Acta Biomaterialia, 2022, 140, 102-115.	8.3	48
30	Effects of Micro-environmental pH of Liposome on Chemical Stability of Loaded Drug. Nanoscale Research Letters, 2017, 12, 504.	5.7	47
31	Drug-free and non-crosslinked chitosan scaffolds with efficient antibacterial activity against both Gram-negative and Gram-positive bacteria. Carbohydrate Polymers, 2020, 241, 116386.	10.2	47
32	Hepatitis B virus preS1-derived lipopeptide functionalized liposomes for targeting of hepatic cells. Biomaterials, 2014, 35, 6130-6141.	11.4	46
33	A high-efficiency, low-toxicity, phospholipids-based phase separation gel for long-term delivery of peptides. Biomaterials, 2015, 45, 1-9.	11.4	46
34	Concentration-dependent protein adsorption at the nano–bio interfaces of polymeric nanoparticles and serum proteins. Nanomedicine, 2017, 12, 2757-2769.	3.3	43
35	A novel submicron emulsion system loaded with vincristine–oleic acid ion-pair complex with improved anticancer effect: in vitro and in vivo studies. International Journal of Nanomedicine, 2013, 8, 1185.	6.7	41
36	Protein corona formed in the gastrointestinal tract and its impacts on oral delivery of nanoparticles. Medicinal Research Reviews, 2021, 41, 1835-1850.	10.5	40

QIANG PENG

#	Article	IF	CITATIONS
37	Antibiofilm effect of drug-free and cationic poly(D,L-lactide-co-glycolide) nanoparticles via nano–bacteria interactions. Nanomedicine, 2018, 13, 1093-1106.	3.3	36
38	Nanomaterials-based photosensitizers and delivery systems for photodynamic cancer therapy. , 2022, 135, 212725.		36
39	Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) Based Electrospun 3D Scaffolds for Delivery of Autogeneic Chondrocytes and Adipose-Derived Stem Cells: Evaluation of Cartilage Defects in Rabbit. Journal of Biomedical Nanotechnology, 2015, 11, 105-116.	1.1	32
40	The effects of interleukin-1β in modulating osteoclast-conditioned medium's influence on gelatinases in chondrocytes through mitogen-activated protein kinases. International Journal of Oral Science, 2015, 7, 220-231.	8.6	32
41	Nanocomplex Based on Biocompatible Phospholipids and Albumin for Long-Circulation Applications. ACS Applied Materials & Interfaces, 2014, 6, 13730-13737.	8.0	31
42	Can nanoparticles and nano‒protein interactions bring a bright future for insulin delivery?. Acta Pharmaceutica Sinica B, 2021, 11, 651-667.	12.0	31
43	Enhanced oral bioavailability of salvianolic acid B by phospholipid complex loaded nanoparticles. Die Pharmazie, 2008, 63, 661-6.	0.5	29
44	The Role of miRNAs in the Differentiation of Adipose-Derived Stem Cells. Current Stem Cell Research and Therapy, 2014, 9, 268-279.	1.3	28
45	Oral Nano-Delivery Systems for Colon Targeting Therapy. Pharmaceutical Nanotechnology, 2017, 5, 83-94.	1.5	28
46	Ti3C2Tx MXene loaded with indocyanine green for synergistic photothermal and photodynamic therapy for drug-resistant bacterium. Colloids and Surfaces B: Biointerfaces, 2022, 217, 112663.	5.0	25
47	Electrospun P34HB fibres: a scaffold for tissue engineering. Cell Proliferation, 2014, 47, 465-475.	5.3	20
48	The establishment of the hemangioma model in nude mouse. Journal of Pediatric Surgery, 2005, 40, 1167-1172.	1.6	19
49	Potentials of combining nanomaterials and stem cell therapy in myocardial repair. Nanomedicine, 2018, 13, 1623-1638.	3.3	18
50	Injectable and biodegradable phospholipid-based phase separation gel for sustained delivery of insulin. Colloids and Surfaces B: Biointerfaces, 2019, 176, 194-201.	5.0	18
51	Inhibition of methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) biofilm by cationic poly (D,) Tj ETQq1 1	0.784314	rgBT/Overlo 16
52	Sodium bicarbonate, an inorganic salt and a potential active agent for cancer therapy. Chinese Chemical Letters, 2021, 32, 3687-3695.	9.0	16
53	The Properties of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and its Applications in Tissue Engineering. Current Stem Cell Research and Therapy, 2014, 9, 215-222.	1.3	16
54	Enhanced Antibacterial Activity of Indocyanine Green-Loaded Graphene Oxide via Synergistic Contact Killing, Photothermal and Photodynamic Therapy. Journal of Biomedical Nanotechnology, 2022, 18, 185-192.	1.1	16

QIANG PENG

#	Article	IF	CITATIONS
55	Functional Nanomaterials and Their Potential Applications in Antibacterial Therapy. Pharmaceutical Nanotechnology, 2019, 7, 129-146.	1.5	15
56	The Implantable and Biodegradable PHBHHx 3D Scaffolds Loaded with Protein-Phospholipid Complex for Sustained Delivery of Proteins. Pharmaceutical Research, 2013, 30, 1077-1085.	3.5	14
57	Sustained PDGF-BB release from PHBHHx loaded nanoparticles in 3D hydrogel/stem cell model. Journal of Biomedical Materials Research - Part A, 2015, 103, 282-288.	4.0	13
58	Graphene Oxide Nanosheets with Efficient Antibacterial Activity Against Methicillin-Resistant <i>Staphylococcus aureus</i> (MRSA). Journal of Biomedical Nanotechnology, 2021, 17, 1627-1634.	1.1	12
59	Miscellaneous Animal Models Accelerate the Application of Mesenchymal Stem Cells for Cartilage Regeneration. Current Stem Cell Research and Therapy, 2014, 9, 223-233.	1.3	10
60	Bacteria and tumor: Understanding the roles of bacteria in tumor genesis and immunology. Microbiological Research, 2022, 261, 127082.	5.3	8
61	An experimental study on the therapy of infantile hemangioma with recombinant interferon γ. Journal of Pediatric Surgery, 2011, 46, 496-501.	1.6	7
62	Potential Replication of Induced Pluripotent Stem Cells for Craniofacial Reconstruction. Current Stem Cell Research and Therapy, 2014, 9, 205-214.	1.3	7
63	Regulation of Extracellular Matrix Remodeling Proteins by Osteoblasts in Titanium Nanoparticle-Induced Aseptic Loosening Model. Journal of Biomedical Nanotechnology, 2015, 11, 1826-1835.	1.1	6
64	Curcumin- and Cyclopamine-Loaded Liposomes to Enhance Therapeutic Efficacy Against Hepatic Fibrosis. Drug Design, Development and Therapy, 2020, Volume 14, 5667-5678.	4.3	4
65	Pharmacokinetics of CNT-based Drug Delivery Systems. Current Drug Metabolism, 2013, 14, 910-920.	1.2	3
66	DNA Nanostructures: Tetrahedral DNA Nanostructure: A Potential Promoter for Cartilage Tissue Regeneration via Regulating Chondrocyte Phenotype and Proliferation (Small 12/2017). Small, 2017, 13, .	10.0	2