Thomas F Gajewski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/348113/publications.pdf

Version: 2024-02-01

144 papers 40,656 citations

75 h-index 127 g-index

149 all docs 149 docs citations

times ranked

149

47256 citing authors

#	Article	IF	CITATIONS
1	Insights from a Rapidly Implemented COVID-19 Biobank Using Electronic Consent and Informatics Tools. Biopreservation and Biobanking, 2023, 21, 166-175.	0.5	O
2	Dietary modulation of the gut microbiome as an immunoregulatory intervention. Cancer Cell, 2022, 40, 246-248.	7.7	8
3	Cancer and the Microbiomeâ€"Influence of the Commensal Microbiota on Cancer, Immune Responses, and Immunotherapy. Gastroenterology, 2021, 160, 600-613.	0.6	167
4	COVIDOSE: A Phase II Clinical Trial of Lowâ€Dose Tocilizumab in the Treatment of Noncritical COVIDâ€19 Pneumonia. Clinical Pharmacology and Therapeutics, 2021, 109, 688-696.	2.3	42
5	Sensitive detection and quantification of SARS-CoV-2 in saliva. Scientific Reports, 2021, 11, 12425.	1.6	24
6	Cost-Effectiveness Analysis of Adjuvant Therapy for BRAF-Mutant Resected Stage III Melanoma in Medicare Patients. Annals of Surgical Oncology, 2021, 28, 9039-9047.	0.7	4
7	Immunogenomic determinants of tumor microenvironment correlate with superior survival in high-risk neuroblastoma., 2021, 9, e002417.		21
8	ASO Visual Abstract: Cost-Effectiveness Analysis of Adjuvant Therapy for BRAF-Mutant Resected Stage 3 Melanoma in Medicare Patients. Annals of Surgical Oncology, 2021, 28, 576-576.	0.7	0
9	Immune cell and tumor cell-derived CXCL10 is indicative of immunotherapy response in metastatic melanoma., 2021, 9, e003521.		56
10	cDC1 dysregulation in cancer: An opportunity for intervention. Journal of Experimental Medicine, 2020, 217, .	4.2	8
11	Perspectives in melanoma: meeting report from the "Melanoma Bridge―(December 5th–7th, 2019,) Tj ET	Qq1 _{.8} 1 0.	784314 rgBT /
12	Immunotherapy with a sting. Science, 2020, 369, 921-922.	6.0	41
13	PAK4 as a cancer immune-evasion target. Nature Cancer, 2020, 1, 18-19.	5.7	13
14	ACCELERATE and European Medicines Agency Paediatric Strategy Forum for medicinal product development of checkpoint inhibitors for use in combination therapy in paediatric patients. European Journal of Cancer, 2020, 127, 52-66.	1.3	52
15	Tumor heterogeneity and clonal cooperation influence the immune selection of IFN- $\hat{1}^3$ -signaling mutant cancer cells. Nature Communications, 2020, 11, 602.	5.8	81
16	Insights from immuno-oncology: the Society for Immunotherapy of Cancer Statement on access to IL-6-targeting therapies for COVID-19., 2020, 8, e000878.		63
17	Epigenetic Control of <i>Cdkn2a.Arf</i> Protects Tumor-Infiltrating Lymphocytes from Metabolic Exhaustion. Cancer Research, 2020, 80, 4707-4719.	0.4	19
18	STING pathway agonism as a cancer therapeutic. Immunological Reviews, 2019, 290, 24-38.	2.8	204

#	Article	IF	Citations
19	Secondary resistance to immunotherapy associated with \hat{l}^2 -catenin pathway activation or PTEN loss in metastatic melanoma. , 2019, 7, 295.		98
20	Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): a phase 3, randomised, double-blind study. Lancet Oncology, The, 2019, 20, 1083-1097.	5.1	611
21	Exploring the emerging role of the microbiome in cancer immunotherapy. , 2019, 7, 108.		217
22	Phase $1/2$ study of epacadostat in combination with ipilimumab in patients with unresectable or metastatic melanoma., 2019, 7, 80.		65
23	Brain Tumor Microenvironment and Host State: Implications for Immunotherapy. Clinical Cancer Research, 2019, 25, 4202-4210.	3.2	207
24	High-Throughput Stability Screening of Neoantigen/HLA Complexes Improves Immunogenicity Predictions. Cancer Immunology Research, 2019, 7, 50-61.	1.6	36
25	WNT/ \hat{l}^2 -catenin Pathway Activation Correlates with Immune Exclusion across Human Cancers. Clinical Cancer Research, 2019, 25, 3074-3083.	3.2	435
26	Back from the dead: TIL apoptosis in cancer immune evasion. British Journal of Cancer, 2018, 118, 309-311.	2.9	8
27	Impact of oncogenic pathways on evasion of antitumour immune responses. Nature Reviews Cancer, 2018, 18, 139-147.	12.8	506
28	The commensal microbiome is associated with anti–PD-1 efficacy in metastatic melanoma patients. Science, 2018, 359, 104-108.	6.0	2,027
29	The microbiome in cancer immunotherapy: Diagnostic tools and therapeutic strategies. Science, 2018, 359, 1366-1370.	6.0	525
30	Intratumoral CD8+ T-cell Apoptosis Is a Major Component of T-cell Dysfunction and Impedes Antitumor Immunity. Cancer Immunology Research, 2018, 6, 14-24.	1.6	129
31	Mechanisms of Tumor Cell–Intrinsic Immune Evasion. Annual Review of Cancer Biology, 2018, 2, 213-228.	2.3	65
32	Safety and Clinical Activity of Pembrolizumab and Multisite Stereotactic Body Radiotherapy in Patients With Advanced Solid Tumors. Journal of Clinical Oncology, 2018, 36, 1611-1618.	0.8	448
33	Epacadostat Plus Pembrolizumab in Patients With Advanced Solid Tumors: Phase I Results From a Multicenter, Open-Label Phase I/II Trial (ECHO-202/KEYNOTE-037). Journal of Clinical Oncology, 2018, 36, 3223-3230.	0.8	267
34	Fast Forward â€" Neoadjuvant Cancer Immunotherapy. New England Journal of Medicine, 2018, 378, 2034-2035.	13.9	9
35	A pharmacodynamic study of sirolimus and metformin in patients with advanced solid tumors. Cancer Chemotherapy and Pharmacology, 2018, 82, 309-317.	1.1	12
36	Severe hemophagocytic lymphohistiocytosis in a melanoma patient treated with ipilimumab + nivolumab., 2018, 6, 73.		46

#	Article	IF	Citations
37	Distinct Graft-Specific TCR Avidity Profiles during Acute Rejection and Tolerance. Cell Reports, 2018, 24, 2112-2126.	2.9	17
38	Improving Efficacy and Safety of Agonistic Anti-CD40 Antibody Through Extracellular Matrix Affinity. Molecular Cancer Therapeutics, 2018, 17, 2399-2411.	1.9	34
39	The EGR2 targets LAG-3 and 4-1BB describe and regulate dysfunctional antigen-specific CD8+ T cells in the tumor microenvironment. Journal of Experimental Medicine, 2017, 214, 381-400.	4.2	154
40	Tumor-Residing Batf3 Dendritic Cells Are Required for Effector T Cell Trafficking and Adoptive T Cell Therapy. Cancer Cell, 2017, 31, 711-723.e4.	7.7	1,011
41	The Microbiota: A New Variable Impacting Cancer Treatment Outcomes. Clinical Cancer Research, 2017, 23, 3229-3231.	3.2	18
42	First-in-Human Phase I Study of the Oral Inhibitor of Indoleamine 2,3-Dioxygenase-1 Epacadostat (INCB024360) in Patients with Advanced Solid Malignancies. Clinical Cancer Research, 2017, 23, 3269-3276.	3.2	244
43	Innate immune signaling and regulation in cancer immunotherapy. Cell Research, 2017, 27, 96-108.	5.7	291
44	Tumor and Microenvironment Evolution during Immunotherapy with Nivolumab. Cell, 2017, 171, 934-949.e16.	13.5	1,515
45	Cancer Immunotherapy Targets Based on Understanding the T Cell-Inflamed Versus Non-T Cell-Inflamed Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2017, 1036, 19-31.	0.8	212
46	Human melanomas and ovarian cancers overexpressing mechanical barrier molecule genes lack immune signatures and have increased patient mortality risk. Oncolmmunology, 2016, 5, e1240857.	2.1	56
47	Molecular Drivers of the Non–T-cell-Inflamed Tumor Microenvironment in Urothelial Bladder Cancer. Cancer Immunology Research, 2016, 4, 563-568.	1.6	293
48	MYC â€" a thorn in the side of cancer immunity. Cell Research, 2016, 26, 639-640.	5.7	7
49	Density of immunogenic antigens does not explain the presence or absence of the T-cell–inflamed tumor microenvironment in melanoma. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7759-E7768.	3.3	328
50	Single dose denileukin diftitox does not enhance vaccine-induced T cell responses or effectively deplete Tregs in advanced melanoma: immune monitoring and clinical results of a randomized phase II trial., 2016, 4, 35.		21
51	NK Cells Restrain Spontaneous Antitumor CD8+ T Cell Priming through PD-1/PD-L1 Interactions with Dendritic Cells. Journal of Immunology, 2016, 197, 953-961.	0.4	93
52	Loss of PTEN Promotes Resistance to T Cell–Mediated Immunotherapy. Cancer Discovery, 2016, 6, 202-216.	7.7	1,158
53	Unlocking tumor vascular barriers with CXCR3: Implications for cancer immunotherapy. Oncolmmunology, 2016, 5, e1116675.	2.1	9
54	Cutting Edge: Engineering Active IKK \hat{l}^2 in T Cells Drives Tumor Rejection. Journal of Immunology, 2016, 196, 2933-2938.	0.4	18

#	Article	IF	CITATIONS
55	Antagonism of the STING Pathway via Activation of the AIM2 Inflammasome by Intracellular DNA. Journal of Immunology, 2016, 196, 3191-3198.	0.4	107
56	Tumor-intrinsic oncogene pathways mediating immune avoidance. Oncolmmunology, 2016, 5, e1086862.	2.1	120
57	Endogenous and pharmacologic targeting of the STING pathway in cancer immunotherapy. Cytokine, 2016, 77, 245-247.	1.4	35
58	Lymphatic vessels regulate immune microenvironments in human and murine melanoma. Journal of Clinical Investigation, 2016, 126, 3389-3402.	3.9	157
59	The host STING pathway at the interface of cancer and immunity. Journal of Clinical Investigation, 2016, 126, 2404-2411.	3.9	327
60	Innate Immune Recognition of Cancer. Annual Review of Immunology, 2015, 33, 445-474.	9.5	431
61	New perspectives on type I IFNs in cancer. Cytokine and Growth Factor Reviews, 2015, 26, 175-178.	3.2	50
62	Phase II Study of Nilotinib in Melanoma Harboring KIT Alterations Following Progression to Prior KIT Inhibition. Clinical Cancer Research, 2015, 21, 2289-2296.	3.2	128
63	T cell-NF-κB activation is required for tumor control in vivo. , 2015, 3, 1.		64
64	Direct Activation of STING in the Tumor Microenvironment Leads to Potent and Systemic Tumor Regression and Immunity. Cell Reports, 2015, 11, 1018-1030.	2.9	1,083
65	Melanoma-intrinsic \hat{l}^2 -catenin signalling prevents anti-tumour immunity. Nature, 2015, 523, 231-235.	13.7	2,130
66	The STING pathway and the T cell-inflamed tumor microenvironment. Trends in Immunology, 2015, 36, 250-256.	2.9	190
67	Molecular Pathways: Targeting the Stimulator of Interferon Genes (STING) in the Immunotherapy of Cancer. Clinical Cancer Research, 2015, 21, 4774-4779.	3.2	145
68	Commensal <i>Bifidobacterium</i> promotes antitumor immunity and facilitates anti–PD-L1 efficacy. Science, 2015, 350, 1084-1089.	6.0	2,782
69	The Next Hurdle in Cancer Immunotherapy: Overcoming the Non–T-Cell–Inflamed Tumor Microenvironment. Seminars in Oncology, 2015, 42, 663-671.	0.8	388
70	Primary Murine CD4+ T Cells Fail to Acquire the Ability to Produce Effector Cytokines When Active Ras Is Present during Th1/Th2 Differentiation. PLoS ONE, 2014, 9, e112831.	1.1	2
71	Therapeutic Activity of High-Dose Intratumoral IFN-β Requires Direct Effect on the Tumor Vasculature. Journal of Immunology, 2014, 193, 4254-4260.	0.4	79
72	STING-Dependent Cytosolic DNA Sensing Promotes Radiation-Induced Type I Interferon-Dependent Antitumor Immunity in Immunogenic Tumors. Immunity, 2014, 41, 843-852.	6.6	1,468

#	Article	IF	Citations
73	Effect of Selumetinib vs Chemotherapy on Progression-Free Survival in Uveal Melanoma. JAMA - Journal of the American Medical Association, 2014, 311, 2397.	3.8	359
74	STING-Dependent Cytosolic DNA Sensing Mediates Innate Immune Recognition of Immunogenic Tumors. Immunity, 2014, 41, 830-842.	6.6	1,325
75	Combination of vemurafenib and cobimetinib in patients with advanced BRAFV600-mutated melanoma: a phase 1b study. Lancet Oncology, The, 2014, 15, 954-965.	5.1	225
76	Mechanism of tumor rejection with doublets of CTLA-4, PD-1/PD-L1, or IDO blockade involves restored IL-2 production and proliferation of CD8+ T cells directly within the tumor microenvironment., 2014, 2, 3.		460
77	Targeting the Tumor Microenvironment with Interferon- \hat{l}^2 Bridges Innate and Adaptive Immune Responses. Cancer Cell, 2014, 25, 37-48.	7.7	236
78	A randomized pilot phase I study of modified carcinoembryonic antigen (CEA) peptide (CAP1-6D)/montanide/GM-CSF-vaccine in patients with pancreatic adenocarcinoma., 2013, 1, 8.		30
79	Up-Regulation of PD-L1, IDO, and T _{regs} in the Melanoma Tumor Microenvironment Is Driven by CD8 ⁺ T Cells. Science Translational Medicine, 2013, 5, 200ra116.	5.8	1,447
80	Rational combinations of immunotherapeutics that target discrete pathways., 2013, 1, 16.		62
81	Innate and adaptive immune cells in the tumor microenvironment. Nature Immunology, 2013, 14, 1014-1022.	7.0	3,109
82	The Society for Immunotherapy of Cancer consensus statement on tumour immunotherapy for the treatment of cutaneous melanoma. Nature Reviews Clinical Oncology, 2013, 10, 588-598.	12.5	177
83	Cancer immunotherapy strategies based on overcoming barriers within the tumor microenvironment. Current Opinion in Immunology, 2013, 25, 268-276.	2.4	352
84	Egr2-dependent gene expression profiling and ChIP-Seq reveal novel biologic targets in T cell anergy. Molecular Immunology, 2013, 55, 283-291.	1.0	37
85	Imatinib for Melanomas Harboring Mutationally Activated or Amplified <i>KIT</i> Arising on Mucosal, Acral, and Chronically Sun-Damaged Skin. Journal of Clinical Oncology, 2013, 31, 3182-3190.	0.8	530
86	CD40 ligation reverses T cell tolerance in acute myeloid leukemia. Journal of Clinical Investigation, 2013, 123, 1999-2010.	3.9	60
87	Transcriptional regulator early growth response gene 2 (Egr2) is required for T cell anergy in vitro and in vivo. Journal of Experimental Medicine, 2012, 209, 2157-2163.	4.2	91
88	Cellular and Molecular Requirements for Rejection of B16 Melanoma in the Setting of Regulatory T Cell Depletion and Homeostatic Proliferation. Journal of Immunology, 2012, 188, 2630-2642.	0.4	45
89	Innate immune sensing of cancer: clues from an identified role for type I IFNs. Cancer Immunology, Immunotherapy, 2012, 61, 1343-1347.	2.0	44
90	Phase II study of the farnesyltransferase inhibitor R115777 in advanced melanoma (CALGB 500104). Journal of Translational Medicine, 2012, 10, 246.	1.8	74

#	Article	IF	Citations
91	Cancer immunotherapy. Molecular Oncology, 2012, 6, 242-250.	2.1	71
92	The immune score as a new possible approach for the classification of cancer. Journal of Translational Medicine, $2012,10,1.$	1.8	656
93	Predictive Biomarkers as a Guide to Future Therapy Selection in Melanoma. , 2012, , 27-40.		O
94	Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8α+ dendritic cells. Journal of Experimental Medicine, 2011, 208, 2005-2016.	4.2	959
95	Molecular Profiling of Melanoma and the Evolution of Patient-Specific Therapy. Seminars in Oncology, 2011, 38, 236-242.	0.8	28
96	Molecular profiling to identify relevant immune resistance mechanisms in the tumor microenvironment. Current Opinion in Immunology, 2011, 23, 286-292.	2.4	134
97	l̂²-Catenin Inhibits T Cell Activation by Selective Interference with Linker for Activation of T Cells–Phospholipase C-l̂³1 Phosphorylation. Journal of Immunology, 2011, 186, 784-790.	0.4	50
98	Transcriptional Profiling of Melanoma as a Potential Predictive Biomarker for Response to Immunotherapy. , 2011 , , 229 - 238 .		1
99	Gene Signature in Melanoma Associated With Clinical Activity. Cancer Journal (Sudbury, Mass), 2010, 16, 399-403.	1.0	232
100	Improved melanoma survival at last! Ipilimumab and a paradigm shift for immunotherapy. Pigment Cell and Melanoma Research, 2010, 23, 580-581.	1.5	6
101	CARMA1 Controls an Early Checkpoint in the Thymic Development of FoxP3+ Regulatory T Cells. Journal of Immunology, 2009, 182, 6736-6743.	0.4	99
102	Costimulatory and coinhibitory receptors in antiâ€ŧumor immunity. Immunological Reviews, 2009, 229, 126-144.	2.8	246
103	Chemokine Expression in Melanoma Metastases Associated with CD8+ T-Cell Recruitment. Cancer Research, 2009, 69, 3077-3085.	0.4	911
104	PD-1/PD-L1 interactions inhibit antitumor immune responses in a murine acute myeloid leukemia model. Blood, 2009, 114, 1545-1552.	0.6	354
105	Glucose deprivation inhibits multiple key gene expression events and effector functions in CD8 ⁺ T cells. European Journal of Immunology, 2008, 38, 2438-2450.	1.6	312
106	Molecular regulation of Tâ€cell anergy. EMBO Reports, 2008, 9, 50-55.	2.0	101
107	Homeostatic Proliferation Plus Regulatory T-Cell Depletion Promotes Potent Rejection of B16 Melanoma. Clinical Cancer Research, 2008, 14, 3156-3167.	3.2	79
108	Melanoma presenting as circulating tumor cells associated with failed angiogenesis. Melanoma Research, 2008, 18, 289-294.	0.6	5

#	Article	IF	Citations
109	Insights into Mechanisms of Immune Resistance in the Tumor Microenvironment through Molecular Profiling., 2008,, 77-89.		1
110	Failure at the Effector Phase: Immune Barriers at the Level of the Melanoma Tumor Microenvironment. Clinical Cancer Research, 2007, 13, 5256-5261.	3.2	210
111	The Expanding Universe of Regulatory T Cell Subsets in Cancer. Immunity, 2007, 27, 185-187.	6.6	20
112	Immune Suppression in the Tumor Microenvironment. Journal of Immunotherapy, 2006, 29, 233-240.	1.2	242
113	Immune resistance orchestrated by the tumor microenvironment. Immunological Reviews, 2006, 213, 131-145.	2.8	409
114	T cell anergy is reversed by active Ras and is regulated by diacylglycerol kinase- \hat{l}_{\pm} . Nature Immunology, 2006, 7, 1166-1173.	7.0	252
115	Tumor progression despite massive influx of activated CD8+ T cells in a patient with malignant melanoma ascites. Cancer Immunology, Immunotherapy, 2006, 55, 1185-1197.	2.0	127
116	Cross-priming of T cells to intracranial tumor antigens elicits an immune response that fails in the effector phase but can be augmented with local immunotherapy. Journal of Neuroimmunology, 2006, 174, 74-81.	1.1	12
117	Blockade of PD-L1 (B7-H1) augments human tumor-specific T cell responsesin vitro. International Journal of Cancer, 2006, 119, 317-327.	2.3	276
118	Homeostatic Proliferation as an Isolated Variable Reverses CD8+ T Cell Anergy and Promotes Tumor Rejection. Journal of Immunology, 2006, 177, 4521-4529.	0.4	75
119	Identifying and Overcoming Immune Resistance Mechanisms in the Melanoma Tumor Microenvironment. Clinical Cancer Research, 2006, 12, 2326s-2330s.	3.2	85
120	Induction of Cytotoxic Granules in Human Memory CD8+ T Cell Subsets Requires Cell Cycle Progression. Journal of Immunology, 2006, 177, 1981-1987.	0.4	29
121	Metabolic Mechanisms of Tumor Resistance to T Cell Effector Function. Immunologic Research, 2005, 31, 107-118.	1.3	19
122	Interaction of PD-L1 on tumor cells with PD-1 on tumor-specific T cells as a mechanism of immune evasion: implications for tumor immunotherapy. Cancer Immunology, Immunotherapy, 2005, 54, 307-314.	2.0	509
123	ICAM-1 Contributes to but Is Not Essential for Tumor Antigen Cross-Priming and CD8+ T Cell-Mediated Tumor Rejection In Vivo. Journal of Immunology, 2005, 174, 3416-3420.	0.4	25
124	Phase II Trial of the O6-Alkylguanine DNA Alkyltransferase Inhibitor O6-Benzylguanine and 1,3-Bis(2-Chloroethyl)-1-Nitrosourea in Advanced Melanoma. Clinical Cancer Research, 2005, 11, 7861-7865.	3.2	61
125	Glucose Availability Regulates IFN- \hat{I}^3 Production and p70S6 Kinase Activation in CD8+ Effector T Cells. Journal of Immunology, 2005, 174, 4670-4677.	0.4	292
126	PD-L1/B7H-1 Inhibits the Effector Phase of Tumor Rejection by T Cell Receptor (TCR) Transgenic CD8+ T Cells. Cancer Research, 2004, 64, 1140-1145.	0.4	679

#	Article	IF	CITATIONS
127	Prospective Study of Immunomodulation with GM-CSF, IL-2, and Rituximab Following Autologous Stem Cell Transplant (SCT) in Patients with Relapsed Lymphomas Blood, 2004, 104, 918-918.	0.6	2
128	Negative Regulation of T-Cell Function by PD-1. Critical Reviews in Immunology, 2004, 24, 229-238.	1.0	82
129	Overcoming immune resistance in the tumor microenvironment by blockade of indoleamine 2,3-dioxygenase and programmed death ligand 1. Current Opinion in Investigational Drugs, 2004, 5, 1279-83.	2.3	3
130	B7DC/PDL2 Promotes Tumor Immunity by a PD-1–independent Mechanism. Journal of Experimental Medicine, 2003, 197, 1721-1730.	4.2	130
131	Gene Array and Protein Expression Profiles Suggest Post-transcriptional Regulation during CD8+ T Cell Differentiation. Journal of Biological Chemistry, 2003, 278, 17044-17052.	1.6	29
132	Immunization With Melan-A Peptide-Pulsed Peripheral Blood Mononuclear Cells Plus Recombinant Human Interleukin-12 Induces Clinical Activity and T-Cell Responses in Advanced Melanoma. Journal of Clinical Oncology, 2003, 21, 2342-2348.	0.8	148
133	Absence of Programmed Death Receptor 1 Alters Thymic Development and Enhances Generation of CD4/CD8 Double-Negative TCR-Transgenic T Cells. Journal of Immunology, 2003, 171, 4574-4581.	0.4	99
134	Allogeneic Stem-Cell Transplantation of Renal Cell Cancer After Nonmyeloablative Chemotherapy: Feasibility, Engraftment, and Clinical Results. Journal of Clinical Oncology, 2002, 20, 2017-2024.	0.8	169
135	Increasing Tumor Antigen Expression Overcomes "lgnorance―to Solid Tumors via Crosspresentation by Bone Marrow-Derived Stromal Cells. Immunity, 2002, 17, 737-747.	6.6	216
136	Integrating IL-12 into therapeutic cancer vaccines. Cancer Chemotherapy and Biological Response Modifiers, 2002, 20, 343-9.	0.5	4
137	CD28 Is Not Required for c-Jun N-Terminal Kinase Activation in T Cells. Journal of Immunology, 2001, 167, 3123-3128.	0.4	24
138	Improved efficacy of dendritic cell vaccines and successful immunization with tumor antigen peptide-pulsed peripheral blood mononuclear cells by coadministration of recombinant murine interleukin-12., 1999, 80, 324-333.		57
139	Interleukin-12-secreting human papillomavirus type 16-transformed cells provide a potent cancer vaccine that generates E7-directed immunity., 1999, 81, 428-437.		42
140	Helper T Cell Differentiation Is Controlled by the Cell Cycle. Immunity, 1998, 9, 229-237.	6.6	786
141	B7-1 Engagement of Cytotoxic T Lymphocyte Antigen 4 Inhibits T Cell Activation in the Absence of CD28. Journal of Experimental Medicine, 1998, 188, 205-210.	4.2	160
142	Apoptosis Meets Signal Transduction: Elimination of a BAD Influence. Cell, 1996, 87, 589-592.	13.5	341
143	Induction of the increased Fyn kinase activity in anergic T helper type 1 clones requires calcium and protein synthesis and is sensitive to cyclosporin A. European Journal of Immunology, 1995, 25, 1836-1842.	1.6	46
144	A peptide encoded by human gene MAGE-3 and presented by HLA-A2 induces cytolytic T lymphocytes that recognize tumor cells expressing MAGE-3. European Journal of Immunology, 1994, 24, 3038-3043.	1.6	339