Patrick T Mather

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3480860/patrick-t-mather-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

136 12,371 59 110 h-index g-index citations papers 6.65 13,165 139 5.4 ext. citations avg, IF L-index ext. papers

#	Paper	IF	Citations
136	Profiling the responsiveness of focal adhesions of human cardiomyocytes to extracellular dynamic nano-topography <i>Bioactive Materials</i> , 2022 , 10, 367-377	16.7	2
135	Synthesis and Characterization of Zwitterionic Polymer Brush Functionalized Hydrogels with Ionic Responsive Coefficient of Friction. <i>Langmuir</i> , 2020 , 36, 3932-3940	4	3
134	Mechanics and tribology of a zwitterionic polymer blend: Impact of molecular weight. <i>Materials Science and Engineering C</i> , 2020 , 111, 110736	8.3	4
133	Progressive Myofibril Reorganization of Human Cardiomyocytes on a Dynamic Nanotopographic Substrate. <i>ACS Applied Materials & amp; Interfaces</i> , 2020 , 12, 21450-21462	9.5	14
132	Dynamic covalent exchange in poly(thioether anhydrides). <i>Polymer Chemistry</i> , 2020 , 11, 7551-7561	4.9	4
131	Non-uniform curvature and anisotropic deformation control wrinkling patterns on tori. <i>Soft Matter</i> , 2019 , 15, 5204-5210	3.6	10
130	Enzymatically triggered shape memory polymers. Acta Biomaterialia, 2019, 84, 88-97	10.8	25
129	Entanglement-Based Thermoplastic Shape Memory Polymeric Particles with Photothermal Actuation for Biomedical Applications. <i>ACS Applied Materials & Entanglement State S</i>	9.5	39
128	A latent crosslinkable PCL-based polyurethane: Synthesis, shape memory, and enzymatic degradation. <i>Journal of Materials Research</i> , 2018 , 33, 2463-2476	2.5	12
127	Ternary Polymeric Composites Exhibiting Bulk and Surface Quadruple-Shape Memory Properties. <i>ChemPhysChem</i> , 2018 , 19, 2014-2024	3.2	2
126	Tuning of reversible actuation via ROMP-based copolymerization semicrystalline polymers. <i>Polymer</i> , 2018 , 156, 228-239	3.9	8
125	The shape-memory effect in ionic elastomers: fixation through ionic interactions. <i>Soft Matter</i> , 2017 , 13, 2983-2994	3.6	13
124	Hot-compacted interwoven webs of biodegradable polymers. <i>Polymer</i> , 2016 , 101, 127-138	3.9	8
123	Osteogenic Capacity of Human Adipose-Derived Stem Cells is Preserved Following Triggering of Shape Memory Scaffolds. <i>Tissue Engineering - Part A</i> , 2016 , 22, 1026-35	3.9	18
122	Anhydride-Based Reconfigurable Shape Memory Elastomers. ACS Macro Letters, 2016 , 5, 203-207	6.6	51
121	Comparative analysis of shape memory-based self-healing coatings. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2016 , 54, 1415-1426	2.6	16
120	A hydrogel-forming liquid crystalline elastomer exhibiting soft shape memory. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2016 , 54, 38-52	2.6	31

(2013-2016)

119	Biodegradable Thermoplastic Elastomers Incorporating POSS: Synthesis, Microstructure, and Mechanical Properties. <i>Macromolecules</i> , 2016 , 49, 3769-3779	5.5	32
118	Synthesis and characterization of a zwitterionic hydrogel blend with low coefficient of friction. <i>Acta Biomaterialia</i> , 2016 , 46, 245-255	10.8	25
117	Mechanically programmed shape change in laminated elastomeric composites. <i>Soft Matter</i> , 2015 , 11, 5754-64	3.6	23
116	Dual-Spun Shape Memory Elastomeric Composites. ACS Macro Letters, 2015, 4, 436-440	6.6	36
115	Photo-induced bending in a light-activated polymer laminated composite. <i>Soft Matter</i> , 2015 , 11, 2673-8	8 2 3.6	46
114	Molecular Composite Coatings on Nafion Using Layer-by-Layer Self-Assembly. <i>ACS Applied Materials</i> & amp; Interfaces, 2015 , 7, 10365-73	9.5	11
113	Nanoscale Order and Crystallization in POSS B CL Shape Memory Molecular Networks. <i>Macromolecules</i> , 2015 , 48, 5770-5779	5.5	50
112	Thermoviscoplastic behaviors of anisotropic shape memory elastomeric composites for cold programmed non-affine shape change. <i>Journal of the Mechanics and Physics of Solids</i> , 2015 , 85, 219-244	. 5	27
111	Interwoven polymer composites via dual-electrospinning with shape memory and self-healing properties. <i>MRS Communications</i> , 2015 , 5, 211-221	2.7	21
110	Fabrication of Polymeric Coatings with Controlled Microtopographies Using an Electrospraying Technique. <i>PLoS ONE</i> , 2015 , 10, e0129960	3.7	22
109	Reversible actuation in main-chain liquid crystalline elastomers with varying crosslink densities. <i>Polymer</i> , 2014 , 55, 5897-5907	3.9	38
108	Preparation and characterization of triple shape memory composite foams. Soft Matter, 2014, 10, 8066	-73,46	25
107	Properties of triple shape memory composites prepared via polymerization-induced phase separation. <i>Soft Matter</i> , 2014 , 10, 3112-21	3.6	56
106	A finite deformation thermomechanical constitutive model for triple shape polymeric composites based on dual thermal transitions. <i>International Journal of Solids and Structures</i> , 2014 , 51, 2777-2790	3.1	38
105	Thermally modulated nanostructure of poly(Etaprolactone) POSS multiblock thermoplastic polyurethanes. <i>Polymer</i> , 2013 , 54, 3350-3362	3.9	41
104	Mechanisms of triple-shape polymeric composites due to dual thermal transitions. <i>Soft Matter</i> , 2013 , 9, 2212	3.6	58
103	Shape-memory-actuated change in scaffold fiber alignment directs stem cell morphology. <i>Acta Biomaterialia</i> , 2013 , 9, 8790-801	10.8	104
102	Water-triggered shape memory of multiblock thermoplastic polyurethanes (TPUs). <i>RSC Advances</i> , 2013 , 3, 15783	3.7	78

101	In vitro wrinkle formation via shape memory dynamically aligns adherent cells. Soft Matter, 2013, 9, 470	15 3.6	49
100	Shape Memory Assisted Self-Healing Coating ACS Macro Letters, 2013, 2, 152-156	6.6	277
99	Evolution of microstructure during shape memory cycling of a main-chain liquid crystalline elastomer. <i>Polymer</i> , 2013 , 54, 2808-2820	3.9	18
98	Design strategies for shape memory polymers. <i>Current Opinion in Chemical Engineering</i> , 2013 , 2, 103-11	1 5.4	23
97	Anisotropic Shape-Memory Elastomeric Composites: Fabrication and Testing. <i>Macromolecular Chemistry and Physics</i> , 2013 , 214, 1247-1257	2.6	14
96	Shape memory poly(Laprolactone)-co-poly(ethylene glycol) foams with body temperature triggering and two-way actuation. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 4916-4920	7.3	73
95	Thermomechanical behavior of shape memory elastomeric composites. <i>Journal of the Mechanics and Physics of Solids</i> , 2012 , 60, 67-83	5	72
94	Crosslinkable liquid crystalline copolymers with variable isotropization temperature. <i>Journal of Materials Chemistry</i> , 2012 , 22, 14518		11
93	Entanglement-based shape memory polyurethanes: Synthesis and characterization. <i>Polymer</i> , 2012 , 53, 5924-5934	3.9	91
92	Soft bacterial polyester-based shape memory nanocomposites featuring reconfigurable nanostructure. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2012 , 50, 387-393	2.6	37
91	A programmable shape-changing scaffold for regenerative medicine 2012 ,		2
90	Polyhedral oligomeric silsesquioxane (POSS) suppresses enzymatic degradation of PCL-based polyurethanes. <i>Biomacromolecules</i> , 2011 , 12, 3066-77	6.9	57
89	A functionally graded shape memory polymer. Soft Matter, 2011, 7, 68-74	3.6	87
88	Shape Memory RGD-Containing Networks: Synthesis, Characterization, and Application in Cell Culture. <i>Macromolecular Symposia</i> , 2011 , 309-310, 162-172	0.8	18
87	Microstructure and Phase Behavior of POSS/PCL Shape Memory Nanocomposites. <i>Macromolecules</i> , 2011 , 44, 5682-5692	5.5	75
86	Linear/network poly(Etaprolactone) blends exhibiting shape memory assisted self-healing (SMASH). ACS Applied Materials & Interfaces, 2011, 3, 152-61	9.5	308
85	Metallo-Responsive Liquid Crystalline Monomers and Polymers. <i>Chemistry of Materials</i> , 2011 , 23, 3525-3	35333	39
84	Two-way reversible shape memory effects in a free-standing polymer composite. <i>Smart Materials and Structures</i> , 2011 , 20, 065010	3.4	111

83	Dynamic cell behavior on shape memory polymer substrates. <i>Biomaterials</i> , 2011 , 32, 2285-93	15.6	182
82	Constitutive Modeling of Shape Memory Effects in Semicrystalline Polymers With Stretch Induced Crystallization. <i>Journal of Engineering Materials and Technology, Transactions of the ASME</i> , 2010 , 132,	1.8	76
81	PEG P OSS Multiblock Polyurethanes: Synthesis, Characterization, and Hydrogel Formation. <i>Macromolecules</i> , 2010 , 43, 7637-7649	5.5	107
80	Conductive shape memory nanocomposites for high speed electrical actuation. <i>Soft Matter</i> , 2010 , 6, 2146	3.6	199
79	Sulfonated Polysulfone/POSS Nanofiber Composite Membranes for PEM Fuel Cells. <i>Journal of the Electrochemical Society</i> , 2010 , 157, B914	3.9	75
78	Blends of Paclitaxel with POSS-Based Biodegradable Polyurethanes: Morphology, Miscibility, and Specific Interactions. <i>Macromolecules</i> , 2010 , 43, 4991-4999	5.5	30
77	Nanofiber composite membranes with low equivalent weight perfluorosulfonic acid polymers. Journal of Materials Chemistry, 2010 , 20, 6282		80
76	Soft shape memory in main-chain liquid crystalline elastomers. <i>Journal of Materials Chemistry</i> , 2010 , 20, 3449		106
75	In vivo kinetic degradation analysis and biocompatibility of aliphatic polyester polyurethanes. <i>Journal of Biomedical Materials Research - Part A</i> , 2010 , 94A, n/a-n/a	5.4	2
74	High conductivity perfluorosulfonic acid nanofiber composite fuel-cell membranes. <i>ChemSusChem</i> , 2010 , 3, 1245-8	8.3	62
73	Triple-Shape Polymeric Composites (TSPCs). Advanced Functional Materials, 2010, 20, 2649-2656	15.6	235
7 2	A thermally responsive, rigid, and reversible adhesive. <i>Polymer</i> , 2010 , 51, 1169-1175	3.9	59
71	In vivo kinetic degradation analysis and biocompatibility of aliphatic polyester polyurethanes. <i>Journal of Biomedical Materials Research - Part A</i> , 2010 , 94, 333-43	5.4	6
70	POSS Polymers: Physical Properties and Biomaterials Applications. <i>Polymer Reviews</i> , 2009 , 49, 25-63	14	305
69	Nafion Nanofiber Membranes. ECS Transactions, 2009, 25, 1451-1458	1	21
68	Polypeptide-catalyzed biosilicification of dentin surfaces. <i>Journal of Dental Research</i> , 2009 , 88, 377-81	8.1	8
67	Tailored drug release from biodegradable stent coatings based on hybrid polyurethanes. <i>Journal of Controlled Release</i> , 2009 , 137, 224-33	11.7	100
66	Rapid synthesis of polymer-silica hybrid nanofibers by biomimetic mineralization. <i>Polymer</i> , 2009 , 50, 12	1 4 .g 22	. 2 27

65	PLGA P OSS End-Linked Networks with Tailored Degradation and Shape Memory Behavior. <i>Macromolecules</i> , 2009 , 42, 6596-6605	5.5	68
64	Vertex Group Effects in Entangled Polystyrene P olyhedral Oligosilsesquioxane (POSS) Copolymers. <i>Macromolecules</i> , 2009 , 42, 1142-1152	5.5	80
63	Combined One-Way and Two-Way Shape Memory in a Glass-Forming Nematic Network. <i>Macromolecules</i> , 2009 , 42, 273-280	5.5	153
62	Shape Memory Polymer Research. <i>Annual Review of Materials Research</i> , 2009 , 39, 445-471	12.8	721
61	Antimicrobial properties of nanostructured hydrogel webs containing silver. <i>Biomacromolecules</i> , 2009 , 10, 2686-93	6.9	90
60	A thermoplastic/thermoset blend exhibiting thermal mending and reversible adhesion. <i>ACS Applied Materials & Amp; Interfaces</i> , 2009 , 1, 612-20	9.5	156
59	Preparation and Characterization of Shape Memory Elastomeric Composites. <i>Macromolecules</i> , 2009 , 42, 7251-7253	5.5	131
58	Nanofiber Network Ion-Exchange Membranes. <i>Macromolecules</i> , 2008 , 41, 4569-4572	5.5	152
57	Biodegradable thermoplastic polyurethanes incorporating polyhedral oligosilsesquioxane. <i>Biomacromolecules</i> , 2008 , 9, 2458-67	6.9	132
56	Shape memory polymers with built-in threshold temperature sensors. <i>Journal of Materials Chemistry</i> , 2008 , 18, 1082		2 01
55	Two-Way Reversible Shape Memory in a Semicrystalline Network. <i>Macromolecules</i> , 2008 , 41, 184-192	5.5	403
54	Polycaprolactone B OSS Chemical/Physical Double Networks. <i>Macromolecules</i> , 2008 , 41, 4730-4738	5.5	173
53	Improved synthesis of functionalized mesogenic 2,6-bisbenzimidazolylpyridine ligands. <i>Tetrahedron</i> , 2008 , 64, 8488-8495	2.4	25
52	Self-Assembly and Chain-Folding in Hybrid Coillīoillīube Triblock Oligomers of Polyethylene-b-Poly(ethylene oxide)-b-Polyhedral Oligomeric Silsesquioxane. <i>Macromolecules</i> , 2007 , 40, 5460-5470	5.5	58
51	Review of progress in shape-memory polymers. <i>Journal of Materials Chemistry</i> , 2007 , 17, 1543		1510
50	Poly(vinyl alcohol) (PVA)/sulfonated polyhedral oligosilsesquioxane (sPOSS) hybrid membranes for direct methanol fuel cell applications. <i>Polymers for Advanced Technologies</i> , 2007 , 18, 535-543	3.2	72
49	Rheological characterization of asphalt in a temperature-gradient combinatorial squeeze-flow setup. <i>Rheologica Acta</i> , 2007 , 46, 1075-1082	2.3	1
48	Composite Membranes for Hydrogen/Air PEM Fuel Cells. <i>ECS Transactions</i> , 2007 , 11, 79-87	1	4

(2004-2007)

47	Deformation-Induced Color Changes in Mechanochromic Polyethylene Blends. <i>Macromolecules</i> , 2007 , 40, 2400-2408	5.5	165
46	Telechelic Poly(ethylene glycol) B OSS Amphiphiles at the Air/Water Interface. <i>Macromolecules</i> , 2007 , 40, 682-688	5.5	68
45	Combined effect of spin speed and ionic strength on polyelectrolyte spin assembly. <i>Langmuir</i> , 2007 , 23, 12589-97	4	31
44	Rheological Behavior of Entangled Polystyrene P olyhedral Oligosilsesquioxane (POSS) Copolymers. <i>Macromolecules</i> , 2007 , 40, 544-554	5.5	114
43	Directed Mineralization on Polyelectrolyte Multilayer Films. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 975, 1		
42	Molecular dynamics simulations of multilayer polyelectrolyte films: effect of electrostatic and short-range interactions. <i>Langmuir</i> , 2006 , 22, 9994-10002	4	53
41	Morphology, Microstructure, and Rheology of Amphiphilic Telechelics Incorporating Polyhedral Oligosilsesquioxane. <i>Macromolecules</i> , 2006 , 39, 9253-9260	5.5	74
40	Effect of stoichiometry on liquid crystalline supramolecular polymers formed with complementary nucleobase pair interactions. <i>Journal of Polymer Science Part A</i> , 2006 , 44, 5049-5059	2.5	18
39	Modification of bisphenol-A based bismaleimide resin (BPA-BMI) with an allyl-terminated hyperbranched polyimide (AT-PAEKI). <i>Polymer</i> , 2006 , 47, 2813-2821	3.9	70
38	Amphiphilic telechelics with polyhedral oligosilsesquioxane (POSS) end-groups: Dilute solution viscometry. <i>Polymer</i> , 2006 , 47, 6202-6207	3.9	59
37	Molecular dynamics simulations of layer-by-layer assembly of polyelectrolytes at charged surfaces: effects of chain degree of polymerization and fraction of charged monomers. <i>Langmuir</i> , 2005 , 21, 6113-	-212	49
36	Interfacial Tension of a Liquid Crystalline Polymer in an Isotropic Polymer Matrix. <i>Macromolecules</i> , 2005 , 38, 7343-7351	5.5	11
35	Tailored Phase Transitions via Mixed-Mesogen Liquid Crystalline Polymers with Silicon-Based Spacers. <i>Macromolecules</i> , 2005 , 38, 4103-4113	5.5	38
34	Welded Electrochromic Conductive Polymer Nanofibers by Electrostatic Spinning. <i>Advanced Materials</i> , 2005 , 17, 2177-2180	24	102
33	Optically transparent self-reinforced poly(ethylene terephthalate) composites: molecular orientation and mechanical properties. <i>Polymer</i> , 2005 , 46, 761-773	3.9	54
32	Crystallization of POSS in a PEG-Based Multiblock Polyurethane: Toward A Hybrid Hydrogel. <i>Materials Research Society Symposia Proceedings</i> , 2004 , 847, 59		4
31	Polyelectrolyte spin assembly: Influence of ionic strength on the growth of multilayered thin films. Journal of Polymer Science, Part B: Polymer Physics, 2004 , 42, 3654-3666	2.6	75
30	Synthesis and Characterization of Unsaturated Thermotropic Polyesters Prepared via Acyclic Diene Metathesis Polymerization. <i>Macromolecules</i> , 2004 , 37, 5239-5249	5.5	15

29	Hybrid epoxy-based thermosets based on polyhedral oligosilsesquioxane: Cure behavior and toughening mechanisms. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2003 , 41, 3299-3313	2.6	121
28	ABA triblock copolymers containing polyhedral oligomeric silsesquioxane pendant groups: synthesis and unique properties. <i>Polymer</i> , 2003 , 44, 2739-2750	3.9	193
27	Shape memory effect exhibited by smectic-C liquid crystalline elastomers. <i>Journal of the American Chemical Society</i> , 2003 , 125, 15300-1	16.4	243
26	Characterization of the cure-state of DGEBA-DDS epoxy using ultrasonic, dynamic mechanical, and thermal probes. <i>Polymer Engineering and Science</i> , 2002 , 42, 51-67	2.3	80
25	Odd E ven Effect of Flexible Spacer Length on Flow-Induced Isotropic-to-Nematic Transition in Segmented Thermotropic Polymers. <i>Macromolecules</i> , 2002 , 35, 1326-1335	5.5	14
24	A New Hyperbranched Poly(aryleneltherletonelmide): Synthesis, Chain-End Functionalization, and Blending with a Bis(maleimide). <i>Macromolecules</i> , 2002 , 35, 4951-4959	5.5	51
23	Amphiphilic Telechelics Incorporating Polyhedral Oligosilsesquioxane: 1. Synthesis and Characterization. <i>Macromolecules</i> , 2002 , 35, 8378-8384	5.5	142
22	Effect of Methyl Methacrylate/Polyhedral Oligomeric Silsesquioxane Random Copolymers in Compatibilization of Polystyrene and Poly(methyl methacrylate) Blends. <i>Macromolecules</i> , 2002 , 35, 80	29 ⁵ 8503	8 ¹⁰⁷
21	Chemically Cross-Linked Polycyclooctene: Synthesis, Characterization, and Shape Memory Behavior. <i>Macromolecules</i> , 2002 , 35, 9868-9874	5.5	241
20	Structural development during deformation of polyurethane containing polyhedral oligomeric silsesquioxanes (POSS) molecules. <i>Polymer</i> , 2001 , 42, 599-611	3.9	254
19	Reinforcement and environmental degradation of nylon-6/clay nanocomposites. <i>Polymer</i> , 2001 , 42, 58	495.5985	8 271
18	Phase Behavior, Rheology, and Morphology of Binary Blends of Semiflexible Main-Chain Thermotropic Liquid-Crystalline Polymers. <i>Macromolecules</i> , 2001 , 34, 7152-7161	5.5	5
17	Nanoscale reinforcement of polyhedral oligomeric silsesquioxane (POSS) in polyurethane elastomer. <i>Polymer International</i> , 2000 , 49, 437-440	3.3	170
16	Shape memory and nanostructure in poly(norbornyl-POSS) copolymers. <i>Polymer International</i> , 2000 , 49, 453-457	3.3	178
15	Synthesis and characterization of fluorinated benzoxazole polymers with high Tg and low dielectric constant. <i>Journal of Polymer Science Part A</i> , 2000 , 38, 1991-2003	2.5	46
14	Optical and Mechanical Rheometry of Semiflexible Main-Chain Thermotropic Liquid-Crystalline Polymers with Varying Pendant Groups. <i>Macromolecules</i> , 2000 , 33, 7922-7930	5.5	10
13	Morphological and Rheological Responses to Shear Start-up and Flow Reversal of Thermotropic Liquid-Crystalline Polymers. <i>Macromolecules</i> , 2000 , 33, 7594-7608	5.5	40
12	Mid-wavelength IR (MWIR) polarizers from glassy cholesteric liquid crystals. <i>Liquid Crystals</i> , 1999 , 26, 557-565	2.3	4

LIST OF PUBLICATIONS

11	Rheology of highly swollen chitosan/polyacrylate hydrogels. <i>Polymer</i> , 1999 , 40, 4593-4602	3.9	83
10	Mesogen-jacketed liquid crystalline polymers via stable free radical polymerization. <i>Macromolecular Chemistry and Physics</i> , 1999 , 200, 2338-2344	2.6	48
9	Mechanical Relaxation and Microstructure of Poly(norbornyl-POSS) Copolymers. <i>Macromolecules</i> , 1999 , 32, 1194-1203	5.5	366
8	Viscoelastic and morphological behavior of hybrid styryl-based polyhedral oligomeric silsesquioxane (POSS) copolymers. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 1998 , 36, 1857-1	18 7 2	221
7	Synthesis and thermal properties of thermosetting bis-benzocyclobutenellerminated arylene ether monomers. <i>Journal of Polymer Science Part A</i> , 1998 , 36, 2637-2651	2.5	18
6	Rheological and mechanical relaxation behavior of a thermally crosslinkable poly(ethylene terephthalate). <i>Polymer Engineering and Science</i> , 1998 , 38, 1174-1184	2.3	1
5	Rheo-Optical Evidence of a Flow-Induced IsotropicNematic Transition in a Thermotropic Liquid-Crystalline Polymer. <i>Macromolecules</i> , 1997 , 30, 7977-7989	5.5	70
4	Thermally crosslinkable thermotropic copolyesters: synthesis, characterization, and processing. <i>Polymer</i> , 1997 , 38, 6009-6022	3.9	8
3	The origin of stress-oscillation damping during start-up and reversal of torsional shearing of nematics. <i>Rheologica Acta</i> , 1997 , 36, 485-497	2.3	2
2	Phase behavior and rheology of blends containing polycarbonate and a thermotropic polyester. Journal of Applied Polymer Science, 1996 , 59, 243-250	2.9	10
1	Synthesis and characterization of a semiflexible liquid crystalline polyester with a broad nematic region. <i>Liquid Crystals</i> , 1994 , 17, 811-826	2.3	9