Jong-Pil Won

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3480702/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Relationship between the rheology and flowability of self-compacting structural synthetic fibre-reinforced cementitious composites. Composite Structures, 2021, 267, 113862.	5.8	7
2	Effects of graphene oxide on pore structure and mechanical properties of cementitious composites. Composite Structures, 2020, 234, 111709.	5.8	31
3	Selection of functional materials for surface-coating of structural synthetic fibres and development of a 3D-printing system for their manufacture. Composite Structures, 2020, 249, 112567.	5.8	4
4	Graphene oxide as an additive to enhance the strength of cementitious composites. Composite Structures, 2020, 242, 112154.	5.8	17
5	Resistance of an eco-friendly nano-polymer fireproof cementitious composite to physical and chemical environments. Composite Structures, 2019, 222, 110901.	5.8	2
6	Shrinkage characteristics and strength recovery of nanomaterials-cement composites. Composite Structures, 2018, 202, 559-565.	5.8	17
7	Interfacial properties of nanosilica-treated structural polymer fibres in cement matrix composites. Composite Structures, 2018, 202, 465-472.	5.8	4
8	Effect of steel fibres on fracture parameters of cementitious composites. Composite Structures, 2018, 204, 658-663.	5.8	16
9	Strength and fire resistance of a high-strength nano-polymer modified cementitious composite. Composite Structures, 2017, 173, 96-105.	5.8	17
10	Resistibility of structural nano-synthetic fibre-reinforced cementitious composites in various chemical and physical environments. Composite Structures, 2017, 179, 495-501.	5.8	2
11	Bond-flexural behaviour of structural nano-synthetic fibre-reinforced cementitious composites. Composite Structures, 2016, 152, 20-33.	5.8	5
12	Shrinkage characteristics of structural nano-synthetic fibre-reinforced cementitious composites. Composite Structures, 2016, 157, 236-243.	5.8	22
13	Optimal dimension of arch-type steel fibre-reinforced cementitious composite for shotcrete. Composite Structures, 2016, 152, 600-606.	5.8	15
14	Enhanced long-term strength and durability of shotcrete with high-strength C 12 A 7 mineral-based accelerator. Cement and Concrete Research, 2015, 76, 121-129.	11.0	34
15	Interfacial phenomena in structural polymeric nano-clay synthetic fiber reinforced cementitious composites. Composite Structures, 2015, 133, 62-69.	5.8	7
16	Improved mixture composition for early-opening heat-conductive concrete. Road Materials and Pavement Design, 2015, 16, 957-969.	4.0	2
17	Bonding behaviour of arch-type steel fibres in a cementitious composite. Composite Structures, 2015, 133, 117-123.	5.8	17
18	Flexural behaviour of arch-type steel fibre reinforced cementitious composites. Composite Structures, 2015, 134, 565-571.	5.8	12

Jong-Pil Won

#	Article	IF	CITATIONS
19	Carbon reduction of precast concrete under the marine environment. Construction and Building Materials, 2015, 74, 118-123.	7.2	17
20	Thermal characteristics of a conductive cement-based composite for a snow-melting heated pavement system. Composite Structures, 2014, 118, 106-111.	5.8	44
21	Flexural behavior of precast reinforced concrete composite members reinforced with structural nano-synthetic and steel fibers. Composite Structures, 2014, 118, 571-579.	5.8	17
22	Shrinkage and corrosion resistance of amorphous metallic-fiber-reinforced cement composites. Composite Structures, 2014, 107, 537-543.	5.8	31
23	Mechanical performance of shotcrete made with a high-strength cement-based mineral accelerator. Construction and Building Materials, 2013, 49, 175-183.	7.2	60
24	Shrinkage and durability characteristics of eco-friendly fireproof high-strength concrete. Construction and Building Materials, 2013, 40, 753-762.	7.2	13
25	Bonding properties of amorphous micro-steel fibre-reinforced cementitious composites. Composite Structures, 2013, 102, 101-109.	5.8	42
26	Mix proportion of eco-friendly fireproof high-strength concrete. Construction and Building Materials, 2013, 38, 181-187.	7.2	12
27	Manufacture and properties of a structural synthetic polymer fiber-containing nanoclay for concrete reinforcement. Polymer Composites, 2013, 34, 1698-1709.	4.6	3
28	Durability characteristics of nano-GFRP composite reinforcing bars for concrete structures in moist and alkaline environments. Composite Structures, 2012, 94, 1236-1242.	5.8	33
29	Flexural behaviour of amorphous micro-steel fibre-reinforced cement composites. Composite Structures, 2012, 94, 1443-1449.	5.8	66
30	Experimental and statistical analysis of the alkali–silica reaction of accelerating admixtures in shotcrete. Construction and Building Materials, 2012, 30, 330-339.	7.2	24
31	Eco-friendly fireproof high-strength polymer cementitious composites. Construction and Building Materials, 2012, 30, 406-412.	7.2	19
32	Thermal characteristics of high-strength polymer–cement composites with lightweight aggregates and polypropylene fiber. Construction and Building Materials, 2011, 25, 3810-3819.	7.2	36
33	Enhanced durability performance of face slab concrete in Concrete-Faced Rock-filled Dam using fly ash and PVA fibre. KSCE Journal of Civil Engineering, 2011, 15, 875-882.	1.9	13
34	Performance evaluation of ultraâ€rapidâ€hardening rollerâ€compacted concrete with styrene butadiene latex. Journal of Applied Polymer Science, 2011, 121, 196-201.	2.6	6
35	Bonding characteristics of recycled polyethylene terephthalate (PET) fibers coated with maleic anhydride grafted polypropylene in cement-based composites. Journal of Applied Polymer Science, 2011, 121, 1908-1915.	2.6	17
36	Mix proportion of high-strength, roller-compacted, latex-modified rapid-set concrete for rapid road repair. Construction and Building Materials, 2011, 25, 1796-1800.	7.2	24

Jong-Pil Won

#	Article	IF	CITATIONS
37	Mix proportion and properties of fire-resistant wet-mixed high-strength polypropylene fiber-reinforced sprayed polymer cement composites. Composite Structures, 2010, 92, 2166-2172.	5.8	15
38	Long-term performance of recycled PET fibre-reinforced cement composites. Construction and Building Materials, 2010, 24, 660-665.	7.2	103
39	Bonding Properties of Carbon Fibre Reinforced Polymer (Cfrp) Reinforcing Bar in High-Strength Concrete with Mineral Admixtures. Polymers and Polymer Composites, 2009, 17, 545-556.	1.9	2
40	Durability of Low-Heat, Ultra Rapid-Hardening, Latex-Modified Polymer Concrete. Progress in Rubber, Plastics and Recycling Technology, 2009, 25, 91-102.	1.8	15
41	Bond Properties of CFRP Rebar in Fiber Reinforced High Strength Concrete with Surface Treatment Methods of Reinforcing Fibers. Journal of the Korea Concrete Institute, 2009, 21, 275-282.	0.2	7
42	Effects of the geometry of recycled PET fiber reinforcement on shrinkage cracking of cement-based composites. Composites Part B: Engineering, 2008, 39, 442-450.	12.0	117
43	Effect of fibers on the bonds between FRP reinforcing bars and high-strength concrete. Composites Part B: Engineering, 2008, 39, 747-755.	12.0	86
44	Microstructural investigation of longâ€ŧerm degradation mechanisms in GFRP dowel bars for jointed concrete pavement. Journal of Applied Polymer Science, 2008, 108, 3128-3137.	2.6	17
45	The effect of exposure to alkaline solution and water on the strength–porosity relationship of GFRP rebar. Composites Part B: Engineering, 2008, 39, 764-772.	12.0	79
46	Influence of a C12A7 mineral-based accelerator on the strength and durability of shotcrete. Cement and Concrete Research, 2008, 38, 379-385.	11.0	63
47	Bond Properties of Glass Fibre-Reinforced Polymer Dowel Bars in Jointed Concrete. Polymers and Polymer Composites, 2008, 16, 187-192.	1.9	3
48	Bond Behavior of Carbon Fiber Polymer Reinforced Polymer Rebar in High Strength Concrete with Replacement Ratio of Silica Fume and Metakaolin. Journal of the Korean Society of Agricultural Engineers, 2008, 50, 51-60.	0.1	0
49	Mechanical Properties and Microstructures of Gfrp Rebar after Long-Term Exposure to Chemical Environments. Polymers and Polymer Composites, 2007, 15, 403-408.	1.9	10
50	Bond Behaviour of Frp Reinforcing Bars in High-Strength Steel Fibre-Reinforced Concrete. Polymers and Polymer Composites, 2007, 15, 569-578.	1.9	5
51	Service Life Prediction of Gfrp Rebars in an Alkaline Environment. Polymers and Polymer Composites, 2007, 15, 475-479.	1.9	1
52	High Strength Polymer-Modified Repair Cementitious Composite for Fire Protection. Polymers and Polymer Composites, 2007, 15, 379-388.	1.9	14
53	Effect of Environmental Exposure on the Mechanical and Bonding Properties of Hybrid FRP Reinforcing Bars for Concrete Structures. Journal of Composite Materials, 2006, 40, 1063-1076.	2.4	55
54	Enhanced durability performance of fly ash concrete for concrete-faced rockfill dam application. Cement and Concrete Research, 2002, 32, 23-30.	11.0	38