Christian Weber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/34803/publications.pdf

Version: 2024-02-01

575 papers

50,086 citations

906 116 h-index 195 g-index

587 all docs 587 docs citations

587 times ranked 50258 citing authors

#	Article	IF	CITATIONS
1	Atherosclerosis: current pathogenesis and therapeutic options. Nature Medicine, 2011, 17, 1410-1422.	30.7	1,765
2	Delivery of MicroRNA-126 by Apoptotic Bodies Induces CXCL12-Dependent Vascular Protection. Science Signaling, 2009, 2, ra81.	3 . 6	1,165
3	MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. Nature Medicine, 2007, 13, 587-596.	30.7	1,065
4	Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nature Medicine, 2003, 9, 61-67.	30.7	931
5	The genome of the protist parasite Entamoeba histolytica. Nature, 2005, 433, 865-868.	27.8	783
6	Microparticles. Circulation Research, 2010, 107, 1047-1057.	4.5	717
7	The multifaceted contributions of leukocyte subsets to atherosclerosis: lessons from mouse models. Nature Reviews Immunology, 2008, 8, 802-815.	22.7	698
8	Hepatic recruitment of the inflammatory Gr1 ⁺ monocyte subset upon liver injury promotes hepatic fibrosis. Hepatology, 2009, 50, 261-274.	7.3	664
9	Platelets as Immune Cells. Circulation Research, 2007, 100, 27-40.	4.5	617
10	JAM-1 is a ligand of the \hat{I}^2 2 integrin LFA-1 involved in transendothelial migration of leukocytes. Nature Immunology, 2002, 3, 151-158.	14.5	578
11	Hyperlipidemia-Triggered Neutrophilia Promotes Early Atherosclerosis. Circulation, 2010, 122, 1837-1845.	1.6	571
12	Rhythmic Modulation of the Hematopoietic Niche through Neutrophil Clearance. Cell, 2013, 153, 1025-1035.	28.9	555
13	MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nature Medicine, 2014, 20, 368-376.	30.7	527
14	Neutrophils orchestrate post-myocardial infarction healing by polarizing macrophages towards a reparative phenotype. European Heart Journal, 2017, 38, ehw002.	2.2	443
15	MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages. Journal of Clinical Investigation, 2012, 122, 4190-4202.	8.2	436
16	The role of junctional adhesion molecules in vascular inflammation. Nature Reviews Immunology, 2007, 7, 467-477.	22.7	431
17	Neutrophils as protagonists and targets in chronic inflammation. Nature Reviews Immunology, 2017, 17, 248-261.	22.7	409
18	Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice. Nature Medicine, 2009, 15, 97-103.	30.7	404

#	Article	IF	Citations
19	CX3CR1 is required for monocyte homeostasis and atherogenesis by promoting cell survival. Blood, 2009, 113, 963-972.	1.4	396
20	HMG-CoA Reductase Inhibitors Decrease CD11b Expression and CD11b-Dependent Adhesion of Monocytes to Endothelium and Reduce Increased Adhesiveness of Monocytes Isolated From Patients With Hypercholesterolemia. Journal of the American College of Cardiology, 1997, 30, 1212-1217.	2.8	393
21	Protective Role of CXC Receptor 4/CXC Ligand 12 Unveils the Importance of Neutrophils in Atherosclerosis. Circulation Research, 2008, 102, 209-217.	4.5	363
22	Biomechanical factors in atherosclerosis: mechanisms and clinical implications. European Heart Journal, 2014, 35, 3013-3020.	2.2	359
23	Platelet Microparticles. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 1512-1518.	2.4	351
24	Neutrophil Extracellular Traps in Atherosclerosis and Atherothrombosis. Circulation Research, 2017, 120, 736-743.	4.5	348
25	Auto-Antigenic Protein-DNA Complexes Stimulate Plasmacytoid Dendritic Cells to Promote Atherosclerosis. Circulation, 2012, 125, 1673-1683.	1.6	347
26	SDF-1α/CXCR4 Axis Is Instrumental in Neointimal Hyperplasia and Recruitment of Smooth Muscle Progenitor Cells. Circulation Research, 2005, 96, 784-791.	4.5	345
27	Chemokines in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1897-1908.	2.4	345
28	Neutrophil secretion products pave the way for inflammatory monocytes. Blood, 2008, 112, 1461-1471.	1.4	343
29	Heterophilic interactions of platelet factor 4 and RANTES promote monocyte arrest on endothelium. Blood, 2005, 105, 924-930.	1.4	338
30	Deposition of Platelet RANTES Triggering Monocyte Recruitment Requires P-Selectin and Is Involved in Neointima Formation After Arterial Injury. Circulation, 2002, 106, 1523-1529.	1.6	332
31	Endothelial dysfunction in COVID-19: a position paper of the ESC Working Group for Atherosclerosis and Vascular Biology, and the ESC Council of Basic Cardiovascular Science. Cardiovascular Research, 2020, 116, 2177-2184.	3.8	331
32	smiFISH and FISH-quant – a flexible single RNA detection approach with super-resolution capability. Nucleic Acids Research, 2016, 44, e165-e165.	14.5	312
33	Non-coding RNAs in cardiovascular diseases: diagnostic and therapeutic perspectives. European Heart Journal, 2018, 39, 2704-2716.	2.2	300
34	Induction of cancer cell apoptosis by αâ€tocopheryl succinate: molecular pathways and structural requirements. FASEB Journal, 2001, 15, 403-415.	0.5	272
35	Del-1, an Endogenous Leukocyte-Endothelial Adhesion Inhibitor, Limits Inflammatory Cell Recruitment. Science, 2008, 322, 1101-1104.	12.6	271
36	Externalized histone H4 orchestrates chronic inflammation by inducing lytic cell death. Nature, 2019, 569, 236-240.	27.8	268

#	Article	IF	CITATIONS
37	Statin Treatment After Onset of Sepsis in a Murine Model Improves Survival. Circulation, 2005, 112, 117-124.	1.6	266
38	Atherosclerotic Plaque Destabilization. Circulation Research, 2014, 114, 214-226.	4.5	266
39	A Neutrophil Timer Coordinates Immune Defense and Vascular Protection. Immunity, 2019, 50, 390-402.e10.	14.3	258
40	Ccr5 But Not Ccr1 Deficiency Reduces Development of Diet-Induced Atherosclerosis in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 373-379.	2.4	254
41	Platelet CD40L mediates thrombotic and inflammatory processes in atherosclerosis. Blood, 2010, 116, 4317-4327.	1.4	249
42	Perivascular Mast Cells Promote Atherogenesis and Induce Plaque Destabilization in Apolipoprotein Eâ \in Deficient Mice. Circulation, 2007, 115, 2516-2525.	1.6	248
43	HMG-CoA Reductase Inhibitor Simvastatin Profoundly Improves Survival in a Murine Model of Sepsis. Circulation, 2004, 109, 2560-2565.	1.6	247
44	Platelets and Chemokines in Atherosclerosis. Circulation Research, 2005, 96, 612-616.	4.5	246
45	Macrophage Migration Inhibitory Factor in Cardiovascular Disease. Circulation, 2008, 117, 1594-1602.	1.6	238
46	Synchronized integrin engagement and chemokine activation is crucial in neutrophil extracellular trap–mediated sterile inflammation. Blood, 2014, 123, 2573-2584.	1.4	234
47	Deficient CD40-TRAF6 signaling in leukocytes prevents atherosclerosis by skewing the immune response toward an antiinflammatory profile. Journal of Experimental Medicine, 2010, 207, 391-404.	8.5	232
48	Chemokines. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 1997-2008.	2.4	229
49	Specialized roles of the chemokine receptors CCR1 and CCR5 in the recruitment of monocytes and TH1-like/CD45RO+T cells. Blood, 2001, 97, 1144-1146.	1.4	228
50	Antagonism of the chemokine Ccl5 ameliorates experimental liver fibrosis in mice. Journal of Clinical Investigation, 2010, 120, 4129-4140.	8.2	227
51	Importance of CXC Chemokine Receptor 2 in the Homing of Human Peripheral Blood Endothelial Progenitor Cells to Sites of Arterial Injury. Circulation Research, 2007, 100, 590-597.	4.5	224
52	CCL17-expressing dendritic cells drive atherosclerosis by restraining regulatory T cell homeostasis in mice. Journal of Clinical Investigation, 2011, 121, 2898-2910.	8.2	223
53	Targeted Disruption of <i>cd73</i> /i>/Ecto-5′-Nucleotidase Alters Thromboregulation and Augments Vascular Inflammatory Response. Circulation Research, 2004, 95, 814-821.	4.5	220
54	Mechanisms underlying neutrophil-mediated monocyte recruitment. Blood, 2009, 114, 4613-4623.	1.4	220

#	Article	IF	CITATIONS
55	Myeloid Type I Interferon Signaling Promotes Atherosclerosis by Stimulating Macrophage Recruitment to Lesions. Cell Metabolism, 2010, 12, 142-153.	16.2	212
56	Presence of luminal neutrophil extracellular traps in atherosclerosis. Thrombosis and Haemostasis, 2012, 107, 597-598.	3.4	212
57	Interleukinâ€13 protects from atherosclerosis and modulates plaque composition by skewing the macrophage phenotype. EMBO Molecular Medicine, 2012, 4, 1072-1086.	6.9	211
58	The CXCL12/CXCR4 chemokine ligand/receptor axis in cardiovascular disease. Frontiers in Physiology, 2014, 5, 212.	2.8	208
59	Lack of Neutrophil-Derived CRAMP Reduces Atherosclerosis in Mice. Circulation Research, 2012, 110, 1052-1056.	4.5	203
60	Disruption of Platelet-derived Chemokine Heteromers Prevents Neutrophil Extravasation in Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2012, 185, 628-636.	5. 6	202
61	MicroRNA-126, -145, and -155. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 449-454.	2.4	202
62	Neutrophils instruct homeostatic and pathological states in naive tissues. Journal of Experimental Medicine, 2018, 215, 2778-2795.	8.5	200
63	ApoE attenuates unresolvable inflammation by complex formation with activated C1q. Nature Medicine, 2019, 25, 496-506.	30.7	200
64	The <i>microRNA-342-5p</i> Fosters Inflammatory Macrophage Activation Through an Akt1-and <i>microRNA-155</i> Fosters Inflammatory Macrophage Activation Through an Akt1-and <i< td=""><td>1.6</td><td>193</td></i<>	1.6	193
65	Microvesicles in vascular homeostasis and diseases. Thrombosis and Haemostasis, 2017, 117, 1296-1316.	3.4	193
66	Crucial Role of Stromal Cell–Derived Factor-1α in Neointima Formation After Vascular Injury in Apolipoprotein E–Deficient Mice. Circulation, 2003, 108, 2491-2497.	1.6	190
67	Platelet Microparticles Enhance the Vasoregenerative Potential of Angiogenic Early Outgrowth Cells After Vascular Injury. Circulation, 2010, 122, 495-506.	1.6	184
68	A functional heteromeric MIF receptor formed by CD74 and CXCR4. FEBS Letters, 2009, 583, 2749-2757.	2.8	182
69	Resolving Lipid Mediators Maresin 1 and Resolvin D2 Prevent Atheroprogression in Mice. Circulation Research, 2016, 119, 1030-1038.	4.5	180
70	Programmed â€~disarming' of the neutrophil proteome reduces the magnitude of inflammation. Nature Immunology, 2020, 21, 135-144.	14.5	180
71	Artery Tertiary Lymphoid Organs Control Aorta Immunity and Protect against Atherosclerosis via Vascular Smooth Muscle Cell Lymphotoxin \hat{I}^2 Receptors. Immunity, 2015, 42, 1100-1115.	14.3	179
72	Lipoprotein-Derived Lysophosphatidic Acid Promotes Atherosclerosis by Releasing CXCL1Âfrom the Endothelium. Cell Metabolism, 2011, 13, 592-600.	16.2	176

#	Article	IF	CITATIONS
73	Novel methodologies for biomarker discovery in atherosclerosis. European Heart Journal, 2015, 36, 2635-2642.	2.2	174
74	Chemokines in the vascular inflammatory response of atherosclerosis. Cardiovascular Research, 2010, 86, 192-201.	3.8	173
75	Distinct functions of chemokine receptor axes in the atherogenic mobilization and recruitment of classical monocytes. EMBO Molecular Medicine, 2013, 5, 471-481.	6.9	169
76	Growth differentiation factor 15 deficiency protects against atherosclerosis by attenuating CCR2-mediated macrophage chemotaxis. Journal of Experimental Medicine, 2011, 208, 217-225.	8.5	168
77	Neutrophils in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 288-295.	2.4	166
78	Hematopoietic Deficiency of the Long Noncoding RNA MALAT1 Promotes Atherosclerosis and Plaque Inflammation. Circulation, 2019, 139, 1320-1334.	1.6	165
79	A Novel Drug-Eluting Stent Coated With an Integrin-Binding Cyclic Arg-Gly-Asp Peptide Inhibits Neointimal Hyperplasia by Recruiting Endothelial Progenitor Cells. Journal of the American College of Cardiology, 2006, 47, 1786-1795.	2.8	163
80	Stabilization of Atherosclerotic Plaques by Blockade of Macrophage Migration Inhibitory Factor After Vascular Injury in Apolipoprotein E–Deficient Mice. Circulation, 2004, 109, 380-385.	1.6	162
81	Inhibiting Inflammation with Myeloid Cell-Specific Nanobiologics Promotes Organ Transplant Acceptance. Immunity, 2018, 49, 819-828.e6.	14.3	161
82	Angiopoietin 2 mediates microvascular and hemodynamic alterations in sepsis. Journal of Clinical Investigation, 2013, 123, 3436-3445.	8.2	160
83	Molecular Imaging of Fibroblast Activity After Myocardial Infarction Using a ⁶⁸ Ga-Labeled Fibroblast Activation Protein Inhibitor, FAPI-04. Journal of Nuclear Medicine, 2019, 60, 1743-1749.	5.0	159
84	Targeting IRE1 with small molecules counteracts progression of atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1395-E1404.	7.1	157
85	Transmembrane chemokines: Versatile â€~special agents' in vascular inflammation. Thrombosis and Haemostasis, 2007, 97, 694-703.	3.4	156
86	Diversity and Inter-Connections in the CXCR4 Chemokine Receptor/Ligand Family: Molecular Perspectives. Frontiers in Immunology, 2015, 6, 429.	4.8	154
87	Mechanical Activation of Hypoxia-Inducible Factor $1\hat{l}\pm$ Drives Endothelial Dysfunction at Atheroprone Sites. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 2087-2101.	2.4	154
88	Long-term assessment of a novel biodegradable paclitaxel-eluting coronary polylactide stent. European Heart Journal, 2004, 25, 1330-1340.	2.2	153
89	Chemical Hybridization of Glucagon and Thyroid Hormone Optimizes Therapeutic Impact for Metabolic Disease. Cell, 2016, 167, 843-857.e14.	28.9	153
90	Mitochondria Play a Central Role in Apoptosis Induced by α-Tocopheryl Succinate, an Agent with Antineoplastic Activity:  Comparison with Receptor-Mediated Pro-Apoptotic Signaling. Biochemistry, 2003, 42, 4277-4291.	2.5	152

#	Article	IF	CITATIONS
91	Structural determinants of MIF functions in CXCR2-mediated inflammatory and atherogenic leukocyte recruitment. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16278-16283.	7.1	150
92	Targeting CD40-Induced TRAF6 Signaling in Macrophages Reduces Atherosclerosis. Journal of the American College of Cardiology, 2018, 71, 527-542.	2.8	149
93	Chemokines in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 742-750.	2.4	145
94	The significance of vasodilator-stimulated phosphoprotein for risk stratification of stent thrombosis. Thrombosis and Haemostasis, 2007, 98, 1329-1334.	3.4	144
95	Regulated release and functional modulation of junctional adhesion molecule A by disintegrin metalloproteinases. Blood, 2009, 113, 4799-4809.	1.4	144
96	CXC chemokine ligand 4 (Cxcl4) is a platelet-derived mediator of experimental liver fibrosis. Hepatology, 2010, 51, 1345-1353.	7.3	144
97	Polymorphism of Bordetella pertussis Isolates Circulating for the Last 10 Years in France, Where a Single Effective Whole-Cell Vaccine Has Been Used for More than 30 Years. Journal of Clinical Microbiology, 2001, 39, 4396-4403.	3.9	140
98	Regulation of endothelial progenitor cell homing after arterial injury. Thrombosis and Haemostasis, 2007, 98, 274-277.	3.4	139
99	Neutrophil granule proteins tune monocytic cell function. Trends in Immunology, 2009, 30, 538-546.	6.8	139
100	Stabilisation of atherosclerotic plaques. Thrombosis and Haemostasis, 2011, 106, 1-19.	3.4	139
101	Chrono-pharmacological Targeting of the CCL2-CCR2 Axis Ameliorates Atherosclerosis. Cell Metabolism, 2018, 28, 175-182.e5.	16.2	139
102	Oxidized Phospholipids Trigger Atherogenic Inflammation in Murine Arteries. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 633-638.	2.4	138
103	Reduced numbers of circulating endothelial progenitor cells in patients with coronary artery disease associated with long-term statin treatment. Atherosclerosis, 2007, 192, 413-420.	0.8	135
104	Macrophage migration inhibitory factor (MIF) exerts antifibrotic effects in experimental liver fibrosis via CD74. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17444-17449.	7.1	133
105	Neutrophil-Derived Cathelicidin Promotes Adhesion of Classical Monocytes. Circulation Research, 2013, 112, 792-801.	4.5	132
106	Therapeutic targeting of chemokine interactions in atherosclerosis. Nature Reviews Drug Discovery, 2010, 9, 141-153.	46.4	130
107	Polymerization of MIP-1 chemokine (CCL3 and CCL4) and clearance of MIP-1 by insulin-degrading enzyme. EMBO Journal, 2010, 29, 3952-3966.	7.8	129
108	MIF interacts with CXCR7 to promote receptor internalization, ERK1/2 and ZAPâ€₹0 signaling, and lymphocyte chemotaxis. FASEB Journal, 2015, 29, 4497-4511.	0.5	129

#	Article	IF	CITATIONS
109	CD73/Ecto-5′-Nucleotidase Protects Against Vascular Inflammation and Neointima Formation. Circulation, 2006, 113, 2120-2127.	1.6	128
110	Endothelial Hypoxia-Inducible Factor- $1\hat{l}_{\pm}$ Promotes Atherosclerosis and Monocyte Recruitment by Upregulating MicroRNA-19a. Hypertension, 2015, 66, 1220-1226.	2.7	128
111	Vascular CXCR4 Limits Atherosclerosis by Maintaining Arterial Integrity. Circulation, 2017, 136, 388-403.	1.6	128
112	Immunotherapy for cardiovascular disease. European Heart Journal, 2019, 40, 3937-3946.	2.2	127
113	Deficiency in CCR5 but not CCR1 protects against neointima formation in atherosclerosis-prone mice: involvement of IL-10. Blood, 2006, 107, 4240-4243.	1.4	126
114	Crucial Role of the CCL2/CCR2 Axis in Neointimal Hyperplasia After Arterial Injury in Hyperlipidemic Mice Involves Early Monocyte Recruitment and CCL2 Presentation on Platelets. Circulation Research, 2004, 95, 1125-1133.	4.5	125
115	Annexin A1 Counteracts Chemokine-Induced Arterial Myeloid Cell Recruitment. Circulation Research, 2015, 116, 827-835.	4.5	124
116	A Non-peptide Functional Antagonist of the CCR1 Chemokine Receptor Is Effective in Rat Heart Transplant Rejection. Journal of Biological Chemistry, 2001, 276, 4199-4204.	3. 4	121
117	Chemokine interactome mapping enables tailored intervention in acute and chronic inflammation. Science Translational Medicine, 2017, 9, .	12.4	121
118	α-Tocopheryl succinate-induced apoptosis in Jurkat T cells involves caspase-3 activation, and both lysosomal and mitochondrial destabilisation. FEBS Letters, 1999, 445, 295-300.	2.8	120
119	Myocardial Stiffness, Cardiac Remodeling, and Diastolic Dysfunction in Calcification-Prone Fetuin-A–Deficient Mice. Journal of the American Society of Nephrology: JASN, 2005, 16, 3357-3364.	6.1	119
120	MicroRNAs in flow-dependent vascular remodelling. Cardiovascular Research, 2013, 99, 294-303.	3.8	119
121	Hypoxia-induced endothelial secretion of macrophage migration inhibitory factor and role in endothelial progenitor cell recruitment. Journal of Cellular and Molecular Medicine, 2011, 15, 668-678.	3.6	118
122	The timeâ€ofâ€day of myocardial infarction onset affects healing through oscillations in cardiac neutrophil recruitment. EMBO Molecular Medicine, 2016, 8, 937-948.	6.9	115
123	Regulation of monocyte cell fate by blood vessels mediated by Notch signalling. Nature Communications, 2016, 7, 12597.	12.8	115
124	CXCR6 Promotes Atherosclerosis by Supporting T-Cell Homing, Interferon- \hat{I}^3 Production, and Macrophage Accumulation in the Aortic Wall. Circulation, 2007, 116, 1801-1811.	1.6	114
125	Double-Edged Role of the CXCL12/CXCR4 Axis in Experimental Myocardial Infarction. Journal of the American College of Cardiology, 2011, 58, 2415-2423.	2.8	114
126	Pericardial Adipose Tissue Regulates Granulopoiesis, Fibrosis, and Cardiac Function After Myocardial Infarction. Circulation, 2018, 137, 948-960.	1.6	114

#	Article	IF	CITATIONS
127	Role and analysis of monocyte subsets in cardiovascular disease. Thrombosis and Haemostasis, 2016, 116, 626-637.	3.4	113
128	Neointimal Smooth Muscle Cells Display a Proinflammatory Phenotype Resulting in Increased Leukocyte Recruitment Mediated by P-Selectin and Chemokines. Circulation Research, 2004, 94, 776-784.	4.5	110
129	A New Monocyte Chemotactic Protein-1/Chemokine CC Motif Ligand-2 Competitor Limiting Neointima Formation and Myocardial Ischemia/Reperfusion Injury in Mice. Journal of the American College of Cardiology, 2010, 56, 1847-1857.	2.8	110
130	Artery Tertiary Lymphoid Organs Contribute to Innate and Adaptive Immune Responses in Advanced Mouse Atherosclerosis. Circulation Research, 2014, 114, 1772-1787.	4.5	108
131	CXCR4 identifies transitional bone marrow premonocytes that replenish the mature monocyte pool for peripheral responses. Journal of Experimental Medicine, 2016, 213, 2293-2314.	8.5	108
132	Reduction of the aortic inflammatory response in spontaneous atherosclerosis by blockade of macrophage migration inhibitory factor (MIF). Atherosclerosis, 2006, 184, 28-38.	0.8	107
133	Transplantation of endothelial progenitor cells improves neovascularization and left ventricular function after myocardial infarction in a rat model. Basic Research in Cardiology, 2008, 103, 69-77.	5.9	106
134	NADPH Oxidase Nox2 Is Required for Hypoxia-Induced Mobilization of Endothelial Progenitor Cells. Circulation Research, 2009, 105, 537-544.	4.5	105
135	Endothelial Dicer promotes atherosclerosis and vascular inflammation by miRNA-103-mediated suppression of KLF4. Nature Communications, 2016, 7, 10521.	12.8	105
136	CCR5 ⁺ T-bet ⁺ FoxP3 ⁺ Effector CD4 T Cells Drive Atherosclerosis. Circulation Research, 2016, 118, 1540-1552.	4.5	104
137	Touch of Chemokines. Frontiers in Immunology, 2012, 3, 175.	4.8	103
138	Regulation of $\langle i \rangle Csf1r\langle i \rangle$ and $\langle i \rangle Bcl6\langle i \rangle$ in Macrophages Mediates the Stage-Specific Effects of MicroRNA-155 on Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 796-803.	2.4	102
139	Stabilization of atherosclerotic plaques: an update. European Heart Journal, 2013, 34, 3251-3258.	2.2	101
140	Endothelial Junctional Adhesion Molecule-A Guides Monocytes Into Flow-Dependent Predilection Sites of Atherosclerosis. Circulation, 2014, 129, 66-76.	1.6	101
141	MicroRNA-mediated mechanisms of the cellular stress response in atherosclerosis. Nature Reviews Cardiology, 2015, 12, 361-374.	13.7	101
142	Neutrophil-Derived Cathelicidin Protects from Neointimal Hyperplasia. Science Translational Medicine, 2011, 3, 103ra98.	12.4	100
143	Endothelial progenitor cells in vascular repair and remodeling. Pharmacological Research, 2008, 58, 148-151.	7.1	99
144	microRNA expression signatures and parallels between monocyte subsets and atherosclerotic plaque in humans. Thrombosis and Haemostasis, 2012, 107, 619-625.	3.4	98

#	Article	IF	Citations
145	Epithelial magnesium transport by TRPM6 is essential for prenatal development and adult survival. ELife, 2016, 5, .	6.0	98
146	Oligomerization of RANTES is required for CCR1-mediated arrest but not CCR5-mediated transmigration of leukocytes on inflamed endothelium. Blood, 2003, 102, 1985-1988.	1.4	97
147	Pathogenic arterial remodeling: the good and bad of microRNAs. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H1050-H1059.	3.2	97
148	Chemokines as Therapeutic Targets in Cardiovascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 583-592.	2.4	96
149	Imaging the Cytokine Receptor CXCR4 in Atherosclerotic Plaques with the Radiotracer ⁶⁸ Ga-Pentixafor for PET. Journal of Nuclear Medicine, 2017, 58, 499-506.	5.0	94
150	Chemokines: established and novel targets in atherosclerosis. EMBO Molecular Medicine, 2011, 3, 713-725.	6.9	93
151	Regulatory T cells in atherosclerosis: critical immune regulatory function and therapeutic potential. Cellular and Molecular Life Sciences, 2016, 73, 901-922.	5.4	93
152	Inflammatory Chemokines in Atherosclerosis. Cells, 2021, 10, 226.	4.1	92
153	Interleukin-6 is a direct mediator of T cell migration. European Journal of Immunology, 2004, 34, 2895-2906.	2.9	91
154	Y-Box Binding Protein-1 Controls CC Chemokine Ligand-5 (CCL5) Expression in Smooth Muscle Cells and Contributes to Neointima Formation in Atherosclerosis-Prone Mice. Circulation, 2007, 116, 1812-1820.	1.6	91
155	Recruitment of classical monocytes can be inhibited by disturbing heteromers of neutrophil HNP1 and platelet CCL5. Science Translational Medicine, 2015, 7, 317ra196.	12.4	90
156	Platelet CD40 Exacerbates Atherosclerosis by Transcellular Activation of Endothelial Cells and Leukocytes. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 482-490.	2.4	90
157	Expression of HIF-1α in Injured Arteries Controls SDF-1α–Mediated Neointima Formation in Apolipoprotein E–Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 2540-2547.	2.4	88
158	Noncanonical inhibition of caspase-3 by a nuclear microRNA confers endothelial protection by autophagy in atherosclerosis. Science Translational Medicine, 2020, 12, .	12.4	88
159	Chemokine CCL5/RANTES inhibition reduces myocardial reperfusion injury in atherosclerotic mice. Journal of Molecular and Cellular Cardiology, 2010, 48, 789-798.	1.9	87
160	Monocytic cell adhesion to endothelial cells stimulated by oxidized low density lipoprotein is mediated by distinct endothelial ligands. Atherosclerosis, 1998, 136, 297-303.	0.8	86
161	Inflammatory mediators in atherosclerotic vascular disease. Basic Research in Cardiology, 2005, 100, 93-101.	5.9	86
162	Neuroimmune cardiovascular interfaces control atherosclerosis. Nature, 2022, 605, 152-159.	27.8	86

#	Article	IF	CITATIONS
163	Artery Tertiary Lymphoid Organs Control Multilayered Territorialized Atherosclerosis B-Cell Responses in Aged <i>ApoE</i> ^{<i>â^²/â^²</i>} Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1174-1185.	2.4	85
164	Differential role of monocyte subsets in atherosclerosis. Thrombosis and Haemostasis, 2011, 106, 757-762.	3.4	83
165	Blood vessel control of macrophage maturation promotes arteriogenesis in ischemia. Nature Communications, 2017, 8, 952.	12.8	83
166	AntimiR-21 Prevents Myocardial Dysfunction in a Pig Model of Ischemia/Reperfusion Injury. Journal of the American College of Cardiology, 2020, 75, 1788-1800.	2.8	82
167	The CD40-TRAF6 axis is the key regulator of the CD40/CD40L system in neointima formation and arterial remodeling. Blood, 2008, 111, 4596-4604.	1.4	80
168	MRTF-A controls vessel growth and maturation by increasing the expression of CCN1 and CCN2. Nature Communications, 2014, 5, 3970.	12.8	80
169	Double-stranded RNA mediates homology-dependant gene silencing of \hat{l}^3 -tubulin in the human parasite Entamoeba histolytica. Molecular and Biochemical Parasitology, 2004, 138, 21-28.	1.1	79
170	Involvement of JAM-A in Mononuclear Cell Recruitment on Inflamed or Atherosclerotic Endothelium. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 729-735.	2.4	79
171	Differential roles of angiogenic chemokines in endothelial progenitor cell-induced angiogenesis. Basic Research in Cardiology, 2013, 108, 310.	5.9	79
172	Nanomedicine-based strategies for treatment of atherosclerosis. Trends in Molecular Medicine, 2014, 20, 271-281.	6.7	79
173	Coenzyme Q blocks biochemical but not receptor-mediated apoptosis by increasing mitochondrial antioxidant protection. FEBS Letters, 2001, 503, 46-50.	2.8	78
174	Fine-tuning leukocyte responses: towards a chemokine â€~interactome'. Trends in Immunology, 2006, 27, 268-273.	6.8	77
175	Contribution of Platelet CX ₃ CR1 to Platelet–Monocyte Complex Formation and Vascular Recruitment During Hyperlipidemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 1186-1193.	2.4	76
176	Platelet chemokines in health and disease. Thrombosis and Haemostasis, 2013, 110, 894-902.	3.4	76
177	Artery Tertiary Lymphoid Organs: Powerhouses of Atherosclerosis Immunity. Frontiers in Immunology, 2016, 7, 387.	4.8	76
178	Atypical chemokine receptor 1 on nucleated erythroid cells regulates hematopoiesis. Nature Immunology, 2017, 18, 753-761.	14.5	76
179	CXCL12 Promotes the Stabilization of Atherosclerotic Lesions Mediated by Smooth Muscle Progenitor Cells in <i>Apoe</i> -Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 679-686.	2.4	75
180	Blockade of Keratinocyte-Derived Chemokine Inhibits Endothelial Recovery and Enhances Plaque Formation After Arterial Injury in ApoE-Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 1891-1896.	2.4	74

#	Article	lF	Citations
181	CD40L Deficiency Ameliorates Adipose Tissue Inflammation and Metabolic Manifestations of Obesity in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2251-2260.	2.4	74
182	Identification of the Virulence Landscape Essential for Entamoeba histolytica Invasion of the Human Colon. PLoS Pathogens, 2013, 9, e1003824.	4.7	74
183	High-Resolution Imaging of Intravascular Atherogenic Inflammation in Live Mice. Circulation Research, 2014, 114, 770-779.	4.5	74
184	Oral Bruton tyrosine kinase inhibitors selectively block atherosclerotic plaque–triggered thrombus formation in humans. Blood, 2018, 131, 2605-2616.	1.4	74
185	SDF- $1\hat{l}\pm$ -Mediated Tissue Repair by Stem Cells: A Promising Tool in Cardiovascular Medicine?. Trends in Cardiovascular Medicine, 2006, 16, 103-108.	4.9	73
186	Vascular endothelial growth factor-A induces plaque expansion in ApoE knock-out mice by promoting de novo leukocyte recruitment. Blood, 2007, 109, 122-129.	1.4	73
187	The lysine- and glutamic acid-rich protein KERP1 plays a role in Entamoeba histolytica liver abscess pathogenesis. Cellular Microbiology, 2007, 10, 070817225835001-???.	2.1	73
188	Role of Extracellular RNA in Atherosclerotic Plaque Formation in Mice. Circulation, 2014, 129, 598-606.	1.6	73
189	Deficiency of the Stroke Relevant <i>HDAC9</i> Gene Attenuates Atherosclerosis in Accord With Allele-Specific Effects at 7p21.1. Stroke, 2015, 46, 197-202.	2.0	73
190	Mechanisms of MicroRNAs in Atherosclerosis. Annual Review of Pathology: Mechanisms of Disease, 2016, 11, 583-616.	22.4	73
191	Identifying the anti-inflammatory response to lipid lowering therapy: a position paper from the working group on atherosclerosis and vascular biology of the European Society of Cardiology. Cardiovascular Research, 2019, 115, 10-19.	3.8	72
192	Stress by Heat Shock Induces Massive Down Regulation of Genes and Allows Differential Allelic Expression of the Gal/GalNAc Lectin in Entamoeba histolytica. Eukaryotic Cell, 2006, 5, 871-875.	3.4	71
193	Chemokine-like functions of MIF in atherosclerosis. Journal of Molecular Medicine, 2008, 86, 761-770.	3.9	71
194	Quantification of stochastic noise of splicing and polyadenylation in Entamoeba histolytica. Nucleic Acids Research, 2013, 41, 1936-1952.	14.5	71
195	Chemokines and microRNAs in atherosclerosis. Cellular and Molecular Life Sciences, 2015, 72, 3253-3266.	5.4	71
196	Chemokines and their receptors in Atherosclerosis. Journal of Molecular Medicine, 2015, 93, 963-971.	3.9	71
197	Inhibition of Inflammatory Endothelial Responses by a Pathway Involving Caspase Activation and p65 Cleavage. Biochemistry, 2001, 40, 4686-4692.	2.5	70
198	Neutrophils launch monocyte extravasation by release of granule proteins. Thrombosis and Haemostasis, 2009, 102, 198-205.	3.4	70

#	Article	IF	CITATIONS
199	Nitric Oxide Attenuates Reoxygenation-induced ICAM-1 Expression in Coronary Microvascular Endothelium: Role of NFîºB. Journal of Molecular and Cellular Cardiology, 1997, 29, 2599-2609.	1.9	69
200	The angiotensin–calcineurin–NFAT pathway mediates stretch-induced up-regulation of matrix metalloproteinases-2/-9 in atrial myocytes. Basic Research in Cardiology, 2009, 104, 435-448.	5.9	69
201	Double-Strand DNA Sensing Aim2 Inflammasome Regulates Atherosclerotic Plaque Vulnerability. Circulation, 2018, 138, 321-323.	1.6	69
202	The amount of calcium-deficient hexagonal hydroxyapatite in aortic valves is influenced by gender and associated with genetic polymorphisms in patients with severe calcific aortic stenosis. European Heart Journal, 2004, 25, 514-522.	2.2	68
203	Plateletâ€Mediated Enhancement of Leukocyte Adhesion. Microcirculation, 2009, 16, 84-96.	1.8	68
204	Chemotaxis ofEntamoeba histolyticatowards the pro-inflammatory cytokine TNF is based on PI3K signalling, cytoskeleton reorganization and the GalactoseN-acetylgalactosamine lectin activity. Cellular Microbiology, 2008, 10, 1676-1686.	2.1	67
205	β-Catenin-dependent pathway activation by both promiscuous "canonical―WNT3a–, and specific "noncanonical―WNT4– and WNT5a–FZD receptor combinations with strong differences in LRP5 and LRP6 dependency. Cellular Signalling, 2014, 26, 260-267.	3.6	67
206	Hyperreactivity of Junctional Adhesion Molecule A-Deficient Platelets Accelerates Atherosclerosis in Hyperlipidemic Mice. Circulation Research, 2015, 116, 587-599.	4.5	67
207	α-Tocopheryl succinate, an agent with in vivo anti-tumour activity, induces apoptosis by causing lysosomal instability. Biochemical Journal, 2002, 362, 709.	3.7	66
208	Sialyltransferase ST3Gal-IV controls CXCR2-mediated firm leukocyte arrest during inflammation. Journal of Experimental Medicine, 2008, 205, 1435-1446.	8.5	66
209	Acetylcholine as an age-dependent non-neuronal source in the heart. Autonomic Neuroscience: Basic and Clinical, 2010, 156, 82-89.	2.8	66
210	Simvastatin Reduces Endotoxin-Induced Acute Lung Injury by Decreasing Neutrophil Recruitment and Radical Formation. PLoS ONE, 2012, 7, e38917.	2.5	66
211	Vaccine-Induced Immune Thrombotic Thrombocytopenia (VITT): Targeting Pathomechanisms with Bruton Tyrosine Kinase Inhibitors. Thrombosis and Haemostasis, 2021, 121, 1395-1399.	3.4	66
212	The role of vitamin E in atherogenesis: linking the chemical, biological and clinical aspects of the disease. Atherosclerosis, 2001, 157, 257-283.	0.8	65
213	Macrophage Migration Inhibitory Factor: A Noncanonical Chemokine Important in Atherosclerosis. Trends in Cardiovascular Medicine, 2009, 19, 76-86.	4.9	65
214	Macrophage migration inhibitory factor in myocardial ischaemia/reperfusion injury. Cardiovascular Research, 2014, 102, 321-328.	3.8	65
215	Macrophage Migration Inhibitory Factor-CXCR4 Receptor Interactions. Journal of Biological Chemistry, 2016, 291, 15881-15895.	3.4	65
216	Mechanisms of Monocyte Recruitment in Vascular Repair After Injury. Antioxidants and Redox Signaling, 2005, 7, 1249-1257.	5.4	64

#	Article	IF	Citations
217	Differential and additive effects of platelet-derived chemokines on monocyte arrest on inflamed endothelium under flow conditions. Journal of Leukocyte Biology, 2005, 78, 435-441.	3.3	64
218	Use of Bacterially Expressed dsRNA to Downregulate Entamoeba histolytica Gene Expression. PLoS ONE, 2009, 4, e8424.	2.5	64
219	Intracellular adenosine regulates epigenetic programming in endothelial cells to promote angiogenesis. EMBO Molecular Medicine, 2017, 9, 1263-1278.	6.9	64
220	Importance of Junctional Adhesion Molecule-A for Neointimal Lesion Formation and Infiltration in Atherosclerosis-Prone Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, e10-3.	2.4	63
221	Blocking CCL5-CXCL4 heteromerization preserves heart function after myocardial infarction by attenuating leukocyte recruitment and NETosis. Scientific Reports, 2018, 8, 10647.	3.3	63
222	Chemokines and galectins form heterodimers to modulate inflammation. EMBO Reports, 2020, 21, e47852.	4.5	63
223	Abrogated transforming growth factor beta receptor II (TGFβRII) signalling in dendritic cells promotes immune reactivity of T cells resulting in enhanced atherosclerosis. European Heart Journal, 2013, 34, 3717-3727.	2.2	62
224	CXCL12 Derived From Endothelial Cells Promotes Atherosclerosis to Drive Coronary Artery Disease. Circulation, 2019, 139, 1338-1340.	1.6	62
225	Myeloid cells in atherosclerosis: initiators and decision shapers. Seminars in Immunopathology, 2009, 31, 35-47.	6.1	61
226	Lysophosphatidic Acid Receptors LPA 1 and LPA 3 Promote CXCL12-Mediated Smooth Muscle Progenitor Cell Recruitment in Neointima Formation. Circulation Research, 2010, 107, 96-105.	4.5	61
227	Activation of CXCR7 Limits Atherosclerosis and Improves Hyperlipidemia by Increasing Cholesterol Uptake in Adipose Tissue. Circulation, 2014, 129, 1244-1253.	1.6	61
228	Small Things Matter: Relevance of MicroRNAs in Cardiovascular Disease. Frontiers in Physiology, 2020, 11, 793.	2.8	61
229	PD-L1 expression on nonclassical monocytes reveals their origin and immunoregulatory function. Science Immunology, 2019, 4, .	11.9	60
230	Targeting the CCL2–CCR2 axis for atheroprotection. European Heart Journal, 2022, 43, 1799-1808.	2.2	60
231	<i>Adam17</i> Deficiency Promotes Atherosclerosis by Enhanced TNFR2 Signaling in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 247-257.	2.4	59
232	CANTOS Trial Validates the Inflammatory Pathogenesis of Atherosclerosis. Circulation Research, 2017, 121, 1119-1121.	4.5	59
233	LFA-1 Binding Destabilizes the JAM-A Homophilic Interaction During Leukocyte Transmigration. Biophysical Journal, 2009, 96, 285-293.	0.5	58
234	Discovery of Small Molecule CD40–TRAF6 Inhibitors. Journal of Chemical Information and Modeling, 2015, 55, 294-307.	5.4	58

#	Article	IF	CITATIONS
235	Interaction of MIF Family Proteins in Myocardial Ischemia/Reperfusion Damage and Their Influence on Clinical Outcome of Cardiac Surgery Patients. Antioxidants and Redox Signaling, 2015, 23, 865-879.	5.4	58
236	MicroRNA-specific regulatory mechanisms in atherosclerosis. Journal of Molecular and Cellular Cardiology, 2015, 89, 35-41.	1.9	58
237	Immunometabolism and atherosclerosis: perspectives and clinical significance: a position paper from the Working Group on Atherosclerosis and Vascular Biology of the European Society of Cardiology. Cardiovascular Research, 2019, 115, 1385-1392.	3.8	58
238	Acute mental stress drives vascular inflammation and promotes plaque destabilization in mouse atherosclerosis. European Heart Journal, 2021, 42, 4077-4088.	2.2	58
239	Cytohesin-1 controls the activation of RhoA and modulates integrin-dependent adhesion and migration of dendritic cells. Blood, 2009, 113, 5801-5810.	1.4	57
240	Deficiency of Endothelial <i>Cxcr4</i> Reduces Reendothelialization and Enhances Neointimal Hyperplasia After Vascular Injury in Atherosclerosis-Prone Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1209-1220.	2.4	57
241	Palmitoylethanolamide Promotes a Proresolving Macrophage Phenotype and Attenuates Atherosclerotic Plaque Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2562-2575.	2.4	57
242	Cytohesin-1 is a dynamic regulator of distinct LFA-1 functions in leukocyte arrest and transmigration triggered by chemokines. Current Biology, 2001, 11, 1969-1974.	3.9	56
243	Chemokines: Inflammatory mediators of atherosclerosis. Archives of Physiology and Biochemistry, 2006, 112, 229-238.	2.1	56
244	Endoplasmic Reticulum Stress-Sensing Mechanism Is Activated in Entamoeba histolytica upon Treatment with Nitric Oxide. PLoS ONE, 2012, 7, e31777.	2.5	56
245	Macrophage-Specific Expression of Mannose-Binding Lectin Controls Atherosclerosis in Low-Density Lipoprotein Receptor–Deficient Mice. Circulation, 2009, 119, 2188-2195.	1.6	55
246	Macrophage migration inhibitory factor (MIF) promotes fibroblast migration in scratchâ€wounded monolayers in vitro. FEBS Letters, 2007, 581, 4734-4742.	2.8	54
247	C1-Esterase Inhibitor Protects Against Neointima Formation After Arterial Injury in Atherosclerosis-Prone Mice. Circulation, 2008, 117, 70-78.	1.6	54
248	C5a Receptor Targeting in Neointima Formation After Arterial Injury in Atherosclerosis-Prone Mice. Circulation, 2010, 122, 1026-1036.	1.6	54
249	Compartmentalized Protective and Detrimental Effects of Endogenous Macrophage Migration-Inhibitory Factor Mediated by CXCR2 in a Mouse Model of Myocardial Ischemia/Reperfusion. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2180-2186.	2.4	54
250	Cathepsin G Controls Arterial But Not Venular Myeloid Cell Recruitment. Circulation, 2016, 134, 1176-1188.	1.6	54
251	Transcriptome Analysis of Reticulated Platelets Reveals a Prothrombotic Profile. Thrombosis and Haemostasis, 2019, 119, 1795-1806.	3.4	54
252	Downregulation by tumor necrosis factor- \hat{l}_{\pm} of monocyte CCR2 expression and monocyte chemotactic protein-1-induced transendothelial migration is antagonized by oxidized low-density lipoprotein. Atherosclerosis, 1999, 145, 115-123.	0.8	53

#	Article	IF	Citations
253	Indium-111 oxine labelling affects the cellular integrity of haematopoietic progenitor cells. European Journal of Nuclear Medicine and Molecular Imaging, 2007, 34, 715-721.	6.4	52
254	Peripheral CD34+ Cells and the Risk of In-Stent Restenosis in Patients With Coronary Heart Disease. American Journal of Cardiology, 2005, 96, 1116-1122.	1.6	51
255	KRP-203, Sphingosine 1-Phosphate Receptor Type 1 Agonist, Ameliorates Atherosclerosis in LDL-R ^{â^'/â^'} Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1505-1512.	2.4	51
256	High glucose conditions induce upregulation of fractalkine and monocyte chemotactic protein-1 in human smooth muscle cells. Thrombosis and Haemostasis, 2008, 100, 1155-1165.	3.4	50
257	Characterization of the CD14++CD16+ Monocyte Population in Human Bone Marrow. PLoS ONE, 2014, 9, e112140.	2.5	50
258	The Microbiota Promotes Arterial Thrombosis in Low-Density Lipoprotein Receptor-Deficient Mice. MBio, 2019, 10, .	4.1	50
259	Extensive transcriptome analysis correlates the plasticity of Entamoeba histolytica pathogenesis to rapid phenotype changes depending on the environment. Scientific Reports, 2016, 6, 35852.	3.3	49
260	Cross talk between smooth muscle cells and monocytes/activated monocytes via CX3CL1/CX3CR1 axis augments expression of pro-atherogenic molecules. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 2026-2035.	4.1	48
261	Role for CD74 and CXCR4 in clathrin-dependent endocytosis of the cytokine MIF. European Journal of Cell Biology, 2012, 91, 435-449.	3.6	48
262	Caffeine Enhances Endothelial Repair by an AMPK-Dependent Mechanism. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1967-1974.	2.4	47
263	Regulation of nerve growth factor in the heart: The role of the calcineurin–NFAT pathway. Journal of Molecular and Cellular Cardiology, 2009, 46, 568-578.	1.9	47
264	Differential Inhibition of Human Atherosclerotic Plaque–Induced Platelet Activation by Dimeric GPVI-Fc and Anti-GPVI Antibodies. Journal of the American College of Cardiology, 2015, 65, 2404-2415.	2.8	47
265	Interleukin- $1\hat{l}^2$ suppression dampens inflammatory leucocyte production and uptake in atherosclerosis. Cardiovascular Research, 2022, 118, 2778-2791.	3.8	47
266	Platelet-Derived Chemokines in Vascular Remodeling and Atherosclerosis. Seminars in Thrombosis and Hemostasis, 2010, 36, 163-169.	2.7	46
267	MIFâ€chemokine receptor interactions in atherogenesis are dependent on an Nâ€loopâ€based 2â€site binding mechanism. FASEB Journal, 2011, 25, 894-906.	0.5	46
268	Do we know enough about the immune pathogenesis of acute coronary syndromes to improve clinical practice?. Thrombosis and Haemostasis, 2012, 108, 443-456.	3.4	46
269	Circadian Control of Inflammatory Processes in Atherosclerosis and Its Complications. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1022-1028.	2.4	46
270	Interplay between hypercholesterolaemia and inflammation in atherosclerosis: Translating experimental targets into clinical practice. European Journal of Preventive Cardiology, 2018, 25, 948-955.	1.8	46

#	Article	IF	Citations
271	ACE-inhibition prevents postischemic coronary leukocyte adhesion and leukocyte-dependent reperfusion injury. Cardiovascular Research, 1997, 36, 386-395.	3.8	45
272	Effects of Oxidized Low Density Lipoprotein, Lipid Mediators and Statins on Vascular Cell Interactions. Clinical Chemistry and Laboratory Medicine, 1999, 37, 243-51.	2.3	45
273	Differential regulation of chemokine CCL5 expression in monocytes/macrophages and renal cells by Y-box protein-1. Kidney International, 2009, 75, 185-196.	5.2	45
274	Requirements for leukocyte transmigration via the transmembrane chemokine CX3CL1. Cellular and Molecular Life Sciences, 2010, 67, 4233-4248.	5.4	44
275	CXCR4 blockade induces atherosclerosis by affecting neutrophil function. Journal of Molecular and Cellular Cardiology, 2014, 74, 44-52.	1.9	44
276	Immunoinflammatory, Thrombohaemostatic, and Cardiovascular Mechanisms in COVID-19. Thrombosis and Haemostasis, 2020, 120, 1629-1641.	3.4	44
277	Downregulation of N-cadherin in the neointima stimulates migration of smooth muscle cells by RhoA deactivation. Cardiovascular Research, 2004, 62, 212-222.	3.8	43
278	Soluble CD40 Ligand Impairs the Function of Peripheral Blood Angiogenic Outgrowth Cells and Increases Neointimal Formation After Arterial Injury. Circulation, 2010, 121, 315-324.	1.6	43
279	Heterophilic chemokine receptor interactions in chemokine signaling and biology. Experimental Cell Research, 2011, 317, 655-663.	2.6	43
280	Deficiency of the Sialyltransferase <i>St3Gal4</i> Reduces Ccl5-Mediated Myeloid Cell Recruitment and Arrest. Circulation Research, 2014, 114, 976-981.	4.5	43
281	Expression and Cellular Localization of CXCR4 and CXCL12 in Human Carotid Atherosclerotic Plaques. Thrombosis and Haemostasis, 2018, 118, 195-206.	3.4	43
282	Hematopoietic Interferon Regulatory Factor 8-Deficiency Accelerates Atherosclerosis in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 1613-1623.	2.4	42
283	MIF and CXCL12 in Cardiovascular Diseases: Functional Differences and Similarities. Frontiers in Immunology, 2015, 6, 373.	4.8	42
284	Identification of an Arg-Leu-Arg tripeptide that contributes to the binding interface between the cytokine MIF and the chemokine receptor CXCR4. Scientific Reports, 2018, 8, 5171.	3.3	42
285	Interactions between dyslipidemia and the immune system and their relevance as putative therapeutic targets in atherosclerosis., 2019, 193, 50-62.		41
286	AntimiR-132 Attenuates Myocardial Hypertrophy in an Animal Model of Percutaneous Aortic Constriction. Journal of the American College of Cardiology, 2021, 77, 2923-2935.	2.8	41
287	Inhibition of atherogenesis by the COP9 signalosome subunit 5 in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2766-E2775.	7.1	40
288	Therapeutic strategies for atherosclerosis and atherothrombosis: Past, present and future. Thrombosis and Haemostasis, 2017, 117, 1258-1264.	3.4	40

#	Article	IF	Citations
289	Non-canonical features of microRNAs: paradigms emerging from cardiovascular disease. Nature Reviews Cardiology, 2022, 19, 620-638.	13.7	40
290	Evaluation of a high-dose dexamethasone-eluting stent. American Journal of Cardiology, 2004, 94, 193-195.	1.6	39
291	Alteration of Matrix Metalloproteinases in Selective Left Ventricular Adriamycin-Induced Cardiomyopathy in the Pig. Journal of Heart and Lung Transplantation, 2009, 28, 1087-1093.	0.6	39
292	Far from the Heart: Receptor cross-talk in remote conditioning. Nature Medicine, 2010, 16, 760-762.	30.7	39
293	A Proteomic and Cellular Analysis of Uropods in the Pathogen Entamoeba histolytica. PLoS Neglected Tropical Diseases, 2011, 5, e1002.	3.0	39
294	Small but smart: MicroRNAs orchestrate atherosclerosis development and progression. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 2075-2086.	2.4	39
295	Cell-specific and divergent roles of the CD40L-CD40 axis in atherosclerotic vascular disease. Nature Communications, 2021, 12, 3754.	12.8	39
296	Circulating monocyte subsets and cardio - vascular risk factors in coronary artery disease. Thrombosis and Haemostasis, 2010, 104, 412-414.	3.4	38
297	TNF- $\hat{l}\pm$ and IFN- \hat{l}^3 promote lymphocyte adhesion to endothelial junctional regions facilitating transendothelial migration. Journal of Leukocyte Biology, 2013, 95, 265-274.	3.3	37
298	Deficiency of the T cell regulator <i>Casitas B-cell lymphoma-B</i> aggravates atherosclerosis by inducing CD8+ T cell-mediated macrophage death. European Heart Journal, 2019, 40, 372-382.	2.2	37
299	The therapeutic potential of progenitor cells in ischemic heart disease. Basic Research in Cardiology, 2006, 101, 1-7.	5.9	36
300	Adult progenitor cells in vascular remodeling during atherosclerosis. Biological Chemistry, 2008, 389, 837-844.	2.5	36
301	Inflammatory role and prognostic value of platelet chemokines in acute coronary syndrome. Thrombosis and Haemostasis, 2014, 112, 1277-1287.	3.4	36
302	Controlled intramyocardial release of engineered chemokines by biodegradable hydrogels as a treatment approach of myocardial infarction. Journal of Cellular and Molecular Medicine, 2014, 18, 790-800.	3.6	36
303	Chemokines. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, e52-6.	2.4	36
304	Docosahexaenoic acid inhibits PAF and LTD4 stimulated [Ca2+]i-increase in differentiated monocytic U937 cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 1991, 1133, 38-45.	4.1	35
305	Pyridoxal isonicotinoyl hydrazone analogs induce apoptosis in hematopoietic cells due to their iron-chelating properties. Biochemical Pharmacology, 2003, 65, 161-172.	4.4	35
306	Ambivalence of progenitor cells in vascular repair and plaque stability. Current Opinion in Lipidology, 2008, 19, 491-497.	2.7	35

#	Article	IF	Citations
307	An optimized flow cytometry protocol for analysis of angiogenic monocytes and endothelial progenitor cells in peripheral blood. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2009, 75A, 848-853.	1.5	35
308	Effect of sphingosine 1-phosphate (S1P) receptor agonists FTY720 and CYM5442 on atherosclerosis development in LDL receptor deficient (LDL-Râ^'/â^') mice. Vascular Pharmacology, 2012, 57, 56-64.	2.1	35
309	Footprints of Neutrophil Extracellular Traps as Predictors of Cardiovascular Risk. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1735-1736.	2.4	35
310	Melanocortin 1 Receptor Signaling Regulates Cholesterol Transport in Macrophages. Circulation, 2017, 136, 83-97.	1.6	35
311	CD27 co-stimulation increases the abundance of regulatory T cells and reduces atherosclerosis in hyperlipidaemic mice. European Heart Journal, 2017, 38, 3590-3599.	2.2	35
312	Intravital imaging of phagocyte recruitment. Thrombosis and Haemostasis, 2011, 105, 802-810.	3.4	34
313	Molecular Ultrasound Imaging of Junctional Adhesion Molecule A Depicts Acute Alterations in Blood Flow and Early Endothelial Dysregulation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 40-48.	2.4	34
314	Electrical stimulation of sympathetic neurons induces autocrine/paracrine effects of NGF mediated by TrkA. Journal of Molecular and Cellular Cardiology, 2010, 49, 79-87.	1.9	33
315	Wnt5a \hat{I}^2 -Catenin Signaling Drives Calcium-Induced Differentiation of Human Primary Keratinocytes. Journal of Investigative Dermatology, 2014, 134, 2183-2191.	0.7	33
316	Ly6C high Monocytes Oscillate in the Heart During Homeostasis and After Myocardial Infarction—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1640-1645.	2.4	33
317	Adhesion properties of Mono Mac 6, a monocytic cell line with characteristics of mature human monocytes. Atherosclerosis, 1995, 113, 99-107.	0.8	32
318	Association of C-reactive protein and myocardial perfusion in patients with ST-elevation acute myocardial infarction. Atherosclerosis, 2006, 186, 177-183.	0.8	32
319	Statins in the intensive care unit. Current Opinion in Critical Care, 2006, 12, 309-314.	3.2	32
320	Effect of catheter-based transendocardial delivery of stromal cell-derived factor $1\hat{l}\pm$ on left ventricular function and perfusion in a porcine model of myocardial infarction. Basic Research in Cardiology, 2006, 101, 69-77.	5.9	32
321	Role of Smooth Muscle cGMP/cGKI Signaling in Murine Vascular Restenosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1244-1250.	2.4	32
322	Importance of Junctional Adhesion Molecule-C for Neointimal Hyperplasia and Monocyte Recruitment in Atherosclerosis-Prone Mice–Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1161-1163.	2.4	32
323	A flow cytometric protocol for enumeration of endothelial progenitor cells and monocyte subsets in human blood. Journal of Immunological Methods, 2012, 381, 9-13.	1.4	32
324	Identification and Characterization of Circulating Variants of CXCL12 from Human Plasma: Effects on Chemotaxis and Mobilization of Hematopoietic Stem and Progenitor Cells. Stem Cells and Development, 2014, 23, 1959-1974.	2.1	32

#	Article	IF	CITATIONS
325	Inhibition of CD40-TRAF6 interactions by the small molecule inhibitor 6877002 reduces neuroinflammation. Journal of Neuroinflammation, 2017, 14, 105.	7.2	32
326	Btk Inhibitors as First Oral Atherothrombosis-Selective Antiplatelet Drugs?. Thrombosis and Haemostasis, 2019, 119, 1212-1221.	3.4	32
327	Oral Bruton tyrosine kinase inhibitors block activation of the platelet Fc receptor CD32a (FcγRIIA): a new option in HIT?. Blood Advances, 2019, 3, 4021-4033.	5.2	32
328	MicroRNAs and Long Non-Coding RNAs as Potential Candidates to Target Specific Motifs of SARS-CoV-2. Non-coding RNA, 2021, 7, 14.	2.6	32
329	Transplantation of Fetal Cardiomyocytes into Infarcted Rat Hearts Results in Long-Term Functional Improvement. Tissue Engineering, 2004, 10, 849-864.	4.6	31
330	Functional alterations of myeloid cell subsets in hyperlipidaemia: relevance for atherosclerosis. Journal of Cellular and Molecular Medicine, 2009, 13, 4293-4303.	3 . 6	31
331	Myocardial regeneration by transplantation of modified endothelial progenitor cells expressing <scp>SDF</scp> â€1 in a rat model. Journal of Cellular and Molecular Medicine, 2012, 16, 2311-2320.	3.6	31
332	The Use of High-Throughput Technologies to Investigate Vascular Inflammation and Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 182-195.	2.4	31
333	Role of cold shock Y-box protein-1 in inflammation, atherosclerosis and organ transplant rejection. European Journal of Cell Biology, 2012, 91, 567-575.	3.6	31
334	Proteomic profiling reveals that EhPC4 transcription factor induces cell migration through up-regulation of the 16-kDa actin-binding protein EhABP16 in Entamoeba histolytica. Journal of Proteomics, 2014, 111, 46-58.	2.4	31
335	Hematopoietic ChemR23 (Chemerin Receptor 23) Fuels Atherosclerosis by Sustaining an M1 Macrophage-Phenotype and Guidance of Plasmacytoid Dendritic Cells to Murine Lesions—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 685-693.	2.4	31
336	Predictors of low circulating endothelial progenitor cell numbers in haemodialysis patients. Nephrology Dialysis Transplantation, 2008, 23, 2611-2618.	0.7	30
337	Disruption of the CCL1-CCR8 axis inhibits vascular Treg recruitment and function and promotes atherosclerosis in mice. Journal of Molecular and Cellular Cardiology, 2019, 132, 154-163.	1.9	30
338	2-Arachidonoylglycerol mobilizes myeloid cells and worsens heart function after acute myocardial infarction. Cardiovascular Research, 2019, 115, 602-613.	3.8	30
339	Dynamic changes in murine vessel geometry assessed by highâ€resolution magnetic resonance angiography: A 9.4T study. Journal of Magnetic Resonance Imaging, 2008, 28, 637-645.	3.4	29
340	A synthesis approach of mouse studies to identify genes and proteins in arterial thrombosis and bleeding. Blood, 2018, 132, e35-e46.	1.4	29
341	Designed CXCR4 mimic acts as a soluble chemokine receptor that blocks atherogenic inflammation by agonist-specific targeting. Nature Communications, 2020, 11, 5981.	12.8	29
342	MCP-1 Induces a Novel Transcription Factor With Proapoptotic Activity. Circulation Research, 2006, 98, 1107-1109.	4.5	28

#	Article	IF	Citations
343	High-reproducible flow cytometric endothelial progenitor cell determination in human peripheral blood as CD34+/CD144+/CD3â° lymphocyte sub-population. Journal of Immunological Methods, 2008, 335, 21-27.	1.4	28
344	DNA repair mechanisms in eukaryotes: Special focus in Entamoeba histolytica and related protozoan parasites. Infection, Genetics and Evolution, 2009, 9, 1051-1056.	2.3	28
345	Constitutive GITR Activation Reduces Atherosclerosis by Promoting Regulatory CD4 ⁺ T-Cell Responses—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1748-1752.	2.4	28
346	Structure-Based Design of Peptidic Inhibitors of the Interaction between CC Chemokine Ligand 5 (CCL5) and Human Neutrophil Peptides 1 (HNP1). Journal of Medicinal Chemistry, 2016, 59, 4289-4301.	6.4	28
347	Protective Aptitude of Annexin A1 in Arterial Neointima Formation in Atherosclerosis-Prone Mice—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 312-315.	2.4	28
348	Optimizing Platelet GPVI Inhibition versus Haemostatic Impairment by the Btk Inhibitors Ibrutinib, Acalabrutinib, ONO/GS-4059, BGB-3111 and Evobrutinib. Thrombosis and Haemostasis, 2019, 119, 397-406.	3.4	28
349	CD36â€triggered cell invasion and persistent tissue colonization by tumor microvesicles during metastasis. FASEB Journal, 2019, 33, 1860-1872.	0.5	28
350	Analysis of Bordetella pertussis isolates collected in Japan before and after introduction of acellular pertussis vaccines. Vaccine, 2001, 19, 3248-3252.	3.8	27
351	Modulation of vascular cell activation, function, and apoptosis: Role of antioxidants and nuclear factor-l̂B. Current Topics in Cellular Regulation, 2001, 36, 217-235.	9.6	27
352	Comparison of the Bordetella pertussis and Bordetella parapertussis Isolates Circulating in Saint Petersburg between 1998 and 2000 with Russian Vaccine Strains. Journal of Clinical Microbiology, 2003, 41, 3706-3711.	3.9	27
353	Effects of DNA damage induced by UV irradiation on gene expression in the protozoan parasite Entamoeba histolytica. Molecular and Biochemical Parasitology, 2009, 164, 165-169.	1.1	27
354	Platelet-derived PF4 reduces neutrophil apoptosis following arterial occlusion. Thrombosis and Haemostasis, 2014, 112, 562-564.	3.4	27
355	Hck/Fgr Kinase Deficiency Reduces Plaque Growth and Stability by Blunting Monocyte Recruitment and Intraplaque Motility. Circulation, 2015, 132, 490-501.	1.6	27
356	Let-7f miRNA regulates SDF-1α- and hypoxia-promoted migration of mesenchymal stem cells and attenuates mammary tumor growth upon exosomal release. Cell Death and Disease, 2021, 12, 516.	6.3	27
357	Improved left ventricular function after transplantation of microspheres and fibroblasts in a rat model of myocardial infarction. Basic Research in Cardiology, 2009, 104, 403-411.	5.9	26
358	High Expression of C5L2 Correlates with High Proinflammatory Cytokine Expression in Advanced Human Atherosclerotic Plaques. American Journal of Pathology, 2014, 184, 2123-2133.	3.8	26
359	A Disintegrin and Metalloproteases (ADAMs) in Cardiovascular, Metabolic and Inflammatory Diseases: Aspects for Theranostic Approaches. Thrombosis and Haemostasis, 2018, 118, 1167-1175.	3.4	26
360	MicroRNA-21 Controls Circadian Regulation of Apoptosis in Atherosclerotic Lesions. Circulation, 2021, 144, 1059-1073.	1.6	26

#	Article	IF	CITATIONS
361	Identification of dihydropyrimidine dehydrogenase as a virulence factor essential for the survival of <i>Entamoeba histolytica </i> in glucose-poor environments. Cellular Microbiology, 2013, 15, 130-144.	2.1	25
362	Endothelial CSN5 impairs NF-κB activation and monocyte adhesion to endothelial cells and is highly expressed in human atherosclerotic lesions. Thrombosis and Haemostasis, 2013, 110, 141-152.	3.4	25
363	Microvascular dysfunction in the course of metabolic syndrome induced by high-fat diet. Cardiovascular Diabetology, 2014, 13, 31.	6.8	25
364	Neutrophils Cast NETs in Atherosclerosis. Circulation Research, 2014, 114, 931-934.	4.5	25
365	Neutrophil-macrophage interplay in atherosclerosis: protease-mediated cytokine processing versus NET release. Thrombosis and Haemostasis, 2015, 114, 866-867.	3.4	25
366	Noninvasive Molecular Ultrasound Monitoring of Vessel Healing After Intravascular Surgical Procedures in a Preclinical Setup. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1366-1373.	2.4	25
367	Inflammation, but not recruitment, of adipose tissue macrophages requires signalling through Mac-1 (CD11b/CD18) in diet-induced obesity (DIO). Thrombosis and Haemostasis, 2017, 117, 325-338.	3.4	25
368	Transplantation of human umbilical vein endothelial cells improves left ventricular function in a rat model of myocardial infarction. Basic Research in Cardiology, 2005, 100, 208-216.	5.9	24
369	In silico analysis of EST and genomic sequences allowed the prediction of cis-regulatory elements for Entamoeba histolytica mRNA polyadenylation. Computational Biology and Chemistry, 2008, 32, 256-263.	2.3	24
370	CD34+CD140b+ cells and circulating CXCL12 correlate with the angiographically assessed severity of cardiac allograft vasculopathy. European Heart Journal, 2011, 32, 476-484.	2.2	24
371	CXC chemokine KC fails to induce neutrophil infiltration and neoangiogenesis in a mouse model of myocardial infarction. Journal of Molecular and Cellular Cardiology, 2013, 60, 1-7.	1.9	24
372	Rhodamine-Loaded Intercellular Adhesion Molecule–1-targeted Microbubbles for Dual-Modality Imaging Under Controlled Shear Stresses. Circulation: Cardiovascular Imaging, 2013, 6, 974-981.	2.6	24
373	Dimeric Glycoprotein VI Binds to Collagen but Not to Fibrin. Thrombosis and Haemostasis, 2018, 118, 351-361.	3.4	24
374	<i>Mif</i> â€deficiency favors an atheroprotective autoantibody phenotype in atherosclerosis. FASEB Journal, 2018, 32, 4428-4443.	0.5	24
375	Involvement of tyrosine phosphorylation in endothelial adhesion molecule induction. Immunologic Research, 1996, 15, 30-37.	2.9	23
376	Sympathetic Neurons Express and Secrete MMP-2 and MT1-MMP to Control Nerve Sprouting via Pro-NGF Conversion. Cellular and Molecular Neurobiology, 2011, 31, 17-25.	3.3	23
377	Dexamethasone and Restenosis After Coronary Stent Implantation: New Indication for an Old Drug?. Current Pharmaceutical Design, 2004, 10, 349-355.	1.9	22
378	The CXCR4 antagonist POL5551 is equally effective as sirolimus in reducing neointima formation without impairing re-endothelialisation. Thrombosis and Haemostasis, 2012, 107, 356-368.	3.4	22

#	Article	IF	CITATIONS
379	Zooming in on microRNAs for refining cardiovascular risk prediction in secondary prevention. European Heart Journal, 2016, 38, ehw259.	2.2	22
380	Chronic Intake of the Selective Serotonin Reuptake Inhibitor Fluoxetine Enhances Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 1007-1019.	2.4	22
381	Glucocorticoid-induced tumour necrosis factor receptor family-related protein (GITR) drives atherosclerosis in mice and is associated with an unstable plaque phenotype and cerebrovascular events in humans. European Heart Journal, 2020, 41, 2938-2948.	2.2	22
382	Usefulness of Pulsed-Field Gel Electrophoresis in Assessing Nosocomial Transmission of Pertussis. Infection Control and Hospital Epidemiology, 1999, 20, 758-760.	1.8	21
383	Dissociation of Apoptosis Induction and CD36 Upregulation by Enzymatically Modified Low-Density Lipoprotein in Monocytic Cells. Biochemical and Biophysical Research Communications, 2002, 290, 988-993.	2.1	21
384	A single prophylactic dose of pentoxifylline reduces high dependency unit time in cardiac surgery — a prospective randomized and controlled studyâ~†. European Journal of Cardio-thoracic Surgery, 2007, 32, 83-89.	1.4	21
385	CCR6 selectively promotes monocyte mediated inflammation and atherogenesis in mice. Thrombosis and Haemostasis, 2013, 110, 1267-1277.	3.4	21
386	CD70 limits atherosclerosis and promotes macrophage function. Thrombosis and Haemostasis, 2017, 117, 164-175.	3.4	21
387	Recombinant GPVI-Fc added to single or dual antiplatelet therapy in vitro prevents plaque-induced platelet thrombus formation. Thrombosis and Haemostasis, 2017, 117, 1651-1659.	3.4	21
388	Atypical Chemokine Receptors in Cardiovascular Disease. Thrombosis and Haemostasis, 2019, 119, 534-541.	3.4	21
389	Trichostatin A regulates peroxiredoxin expression and virulence of the parasite Entamoeba histolyticaâ~†. Molecular and Biochemical Parasitology, 2008, 158, 82-94.	1.1	20
390	1H, 13C, and 15N backbone and side-chain chemical shift assignments for the 36 proline-containing, full length 29ÂkDa human chimera-type galectin-3. Biomolecular NMR Assignments, 2015, 9, 59-63.	0.8	20
391	Upregulation of miR-203 and miR-210 affect growth and differentiation of keratinocytes after exposure to sulfur mustard in normoxia and hypoxia. Toxicology Letters, 2016, 244, 81-87.	0.8	20
392	Dicer generates a regulatory microRNA network in smooth muscle cells that limits neointima formation during vascular repair. Cellular and Molecular Life Sciences, 2017, 74, 359-372.	5.4	20
393	Targeting the polyadenylation factor EhCFIm25 with RNA aptamers controls survival in Entamoeba histolytica. Scientific Reports, 2018, 8, 5720.	3.3	20
394	Systematic RNA-interference in primary human monocyte-derived macrophages: A high-throughput platform to study foam cell formation. Scientific Reports, 2018, 8, 10516.	3.3	20
395	Beyond Self-Recycling: Cell-Specific Role of Autophagy in Atherosclerosis. Cells, 2021, 10, 625.	4.1	20
396	Bioinformatics and Functional Analysis of an Entamoeba histolytica Mannosyltransferase Necessary for Parasite Complement Resistance and Hepatical Infection. PLoS Neglected Tropical Diseases, 2008, 2, e165.	3.0	20

#	Article	IF	Citations
397	Administration of Vascular Endothelial Growth Factor Adjunctive to Fetal Cardiomyocyte Transplantation and Improvement of Cardiac Function in the Rat Model. Journal of Cardiovascular Pharmacology and Therapeutics, 2005, 10, 55-66.	2.0	19
398	Selective Binding and Presentation of CCL5 by Discrete Tissue Microenvironments during Renal Inflammation. Journal of the American Society of Nephrology: JASN, 2007, 18, 1835-1844.	6.1	19
399	Atherogenic mononuclear cell recruitment is facilitated by oxidized lipoprotein-induced endothelial junctional adhesion molecule-A redistribution. Atherosclerosis, 2014, 234, 254-264.	0.8	19
400	Plasma microRNA signature associated with retinopathy in patients with type 2 diabetes. Scientific Reports, 2021, 11, 4136.	3.3	19
401	B-Cell–Specific CXCR4 Protects Against Atherosclerosis Development and Increases Plasma IgM Levels. Circulation Research, 2020, 126, 787-788.	4.5	19
402	ApoE controls the interface linking lipids and inflammation in atherosclerosis. Journal of Clinical Investigation, 2011, 121, 3825-3827.	8.2	19
403	Sensitive visualization of SARS-CoV-2 RNA with CoronaFISH. Life Science Alliance, 2022, 5, e202101124.	2.8	19
404	Cyclopentenone prostaglandins induce endothelial cell apoptosis independent of the peroxisome proliferator-activated receptor- \hat{l}^3 . European Journal of Immunology, 2004, 34, 241-250.	2.9	18
405	Statins: a preventive strike against sepsis in patients with cardiovascular disease?. Lancet, The, 2006, 367, 372-373.	13.7	18
406	Anti-Inflammatory Therapeutic Approaches to Reduce Acute Atherosclerotic Complications. Current Pharmaceutical Biotechnology, 2012, 13, 37-45.	1.6	18
407	MicroRNAs. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 168-169.	2.4	18
408	Gene Expression Profiling in Entamoeba histolytica Identifies Key Components in Iron Uptake and Metabolism. PLoS ONE, 2014, 9, e107102.	2.5	18
409	Immune-mediated and lipid-mediated platelet function in atherosclerosis. Current Opinion in Lipidology, 2015, 26, 438-448.	2.7	18
410	Atheroprotective role of C5ar2 deficiency in apolipoprotein E-deficient mice. Thrombosis and Haemostasis, 2015, 114, 848-858.	3.4	18
411	RECK (reversion-inducing cysteine-rich protein with Kazal motifs) regulates migration, differentiation and Wnt $\hat{\mathbb{I}}^2$ -catenin signaling in human mesenchymal stem cells. Cellular and Molecular Life Sciences, 2016, 73, 1489-1501.	5.4	18
412	Multi-photon microscopy in cardiovascular research. Methods, 2017, 130, 79-89.	3.8	18
413	Novel Features of Monocytes and Macrophages in Cardiovascular Biology and Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, e30-e37.	2.4	18
414	Myeloid CD40 deficiency reduces atherosclerosis by impairing macrophages' transition into a pro-inflammatory state. Cardiovascular Research, 2023, 119, 1146-1160.	3.8	18

#	Article	IF	CITATIONS
415	Blockade of Angio-Associated Migratory Cell Protein Inhibits Smooth Muscle Cell Migration and Neointima Formation in Accelerated Atherosclerosis. Journal of the American College of Cardiology, 2008, 52, 302-311.	2.8	17
416	mRNA Decay Proteins Are Targeted to poly(A)+ RNA and dsRNA-Containing Cytoplasmic Foci That Resemble P-Bodies in Entamoeba histolytica. PLoS ONE, 2012, 7, e45966.	2.5	17
417	Contrasting effects of myeloid and endothelial ADAM17 on atherosclerosis development. Thrombosis and Haemostasis, 2017, 117, 644-646.	3.4	17
418	Double bond configuration of palmitoleate is critical for atheroprotection. Molecular Metabolism, 2019, 28, 58-72.	6.5	17
419	Biphasic effect of pioglitazone on isolated human endothelial progenitor cells: Involvement of peroxisome proliferator-activated receptor- \hat{l}^3 and transforming growth factor- \hat{l}^2 1. Thrombosis and Haemostasis, 2007, 97, 988-997.	3.4	17
420	Characterization of Adenylate Cyclase-Hemolysin Gene Duplication in a Bordetella pertussis Isolate. Infection and Immunity, 2004, 72, 4874-4877.	2.2	16
421	Putative DEAD and DExH-box RNA helicases families in Entamoeba histolytica. Gene, 2008, 424, 1-10.	2.2	16
422	Chemokines in Atherosclerosis, Thrombosis, and Vascular Biology. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1896-1896.	2.4	16
423	The basic residue cluster 55KKWVR59 in CCL5 is required for in vivo biologic function. Molecular Immunology, 2009, 46, 2533-2538.	2.2	16
424	Probing Functional Heteromeric Chemokine Protein–Protein Interactions through Conformationâ€Assisted Oxime Ligation. Angewandte Chemie - International Edition, 2016, 55, 14963-14966.	13.8	16
425	Deletion of junctional adhesion molecule A from platelets increases earlyâ€stage neointima formation after wire injury in hyperlipidemic mice. Journal of Cellular and Molecular Medicine, 2017, 21, 1523-1531.	3.6	16
426	Germ-free housing conditions do not affect aortic root and aortic arch lesion size of late atherosclerotic low-density lipoprotein receptor-deficient mice. Gut Microbes, 2020, 11, 1809-1823.	9.8	16
427	Inositolâ€requiring enzymeâ€1 regulates phosphoinositide signaling lipids and macrophage growth. EMBO Reports, 2020, 21, e51462.	4.5	16
428	The Platelet – Thrombosis and Beyond. Thrombosis and Haemostasis, 2013, 110, 857-858.	3.4	15
429	Specific Visualization of Nitric Oxide in the Vasculature with Two-Photon Microscopy Using a Copper Based Fluorescent Probe. PLoS ONE, 2013, 8, e75331.	2.5	15
430	Bioassay-Guided Fractionation of Extracts from Codiaeum variegatum against Entamoeba histolytica Discovers Compounds That Modify Expression of Ceramide Biosynthesis Related Genes. PLoS Neglected Tropical Diseases, 2014, 8, e2607.	3.0	15
431	Echogenic perfluorohexane-loaded macrophages adhere in vivo to activated vascular endothelium in mice, an explorative study. Cardiovascular Ultrasound, $2015,13,1.$	1.6	15
432	G-Protein Coupled Receptor Targeting on Myeloid Cells in Atherosclerosis. Frontiers in Pharmacology, 2019, 10, 531.	3.5	15

#	Article	IF	Citations
433	Enzymatically modified low-density lipoprotein upregulates CD36 in low-differentiated monocytic cells in a peroxisome proliferator-activated receptor-l³-dependent way. Biochemical Pharmacology, 2004, 67, 841-854.	4.4	14
434	Chronic Electrical Neuronal Stimulation Increases Cardiac Parasympathetic Tone by Eliciting Neurotrophic Effects. Circulation Research, 2011, 108, 1209-1219.	4.5	14
435	Multinucleation and Polykaryon Formation is Promoted by the EhPC4 Transcription Factor in Entamoeba histolytica. Scientific Reports, 2016, 6, 19611.	3.3	14
436	Impairment of hypoxia-induced HIF- $1\hat{1}\pm$ signaling in keratinocytes and fibroblasts by sulfur mustard is counteracted by a selective PHD-2 inhibitor. Archives of Toxicology, 2016, 90, 1141-1150.	4.2	14
437	Deficiency of Endothelial CD40 Induces a Stable Plaque Phenotype and Limits Inflammatory Cell Recruitment to Atherosclerotic Lesions in Mice. Thrombosis and Haemostasis, 2021, 121, 1530-1540.	3.4	14
438	May your New Year be happy and prosperous with "Thrombosis and Haemostasis― Thrombosis and Haemostasis, 2016, 115, 1-2.	3.4	14
439	Bone Marrow-Specific Knock-In of a Non-Activatable Ikk $\hat{l}\pm$ Kinase Mutant Influences Haematopoiesis but Not Atherosclerosis in Apoe-Deficient Mice. PLoS ONE, 2014, 9, e87452.	2.5	14
440	Targeting In-Stent-Stenosis with RGD- and CXCL1-Coated Mini-Stents in Mice. PLoS ONE, 2016, 11, e0155829.	2.5	14
441	Lovastin inhibits receptors-stimulated Ca2+-influx in retinoic acid differentiated U937 and HL-60 cells. Cellular Signalling, 1994, 6, 735-742.	3.6	13
442	Circulating miRNAs: messengers on the move in cardiovascular disease. Thrombosis and Haemostasis, 2012, 108, 590-591.	3.4	13
443	Proteomic analysis identifies endoribouclease EhL-PSP and EhRRP41 exosome protein as novel interactors of EhCAF1 deadenylase. Journal of Proteomics, 2014, 111, 59-73.	2.4	13
444	Fibronectin extradomain A: balancing atherosclerotic plaque burden and stability. Thrombosis and Haemostasis, 2015, 114, 4-4.	3.4	13
445	Cross-Linking GPVI-Fc by Anti-Fc Antibodies Potentiates Its Inhibition ofÂAtherosclerotic Plaque- and Collagen-Induced Platelet Activation. JACC Basic To Translational Science, 2016, 1, 131-142.	4.1	13
446	Whole body and hematopoietic ADAM8 deficiency does not influence advanced atherosclerotic lesion development, despite its association with human plaque progression. Scientific Reports, 2017, 7, 11670.	3.3	13
447	Atherosclerosis revisited from a clinical perspective: still an inflammatory disease?. Thrombosis and Haemostasis, 2017, 117, 231-237.	3.4	13
448	Reporting Sex and Sex Differences in Preclinical Studies. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, e171-e184.	2.4	13
449	Targeting platelet-derived CXCL12 impedes arterial thrombosis. Blood, 2022, 139, 2691-2705.	1.4	13
450	Driving cells into atherosclerotic lesions– a deleterious role for viral chemokine receptors?. Trends in Microbiology, 2000, 8, 294-296.	7.7	12

#	Article	IF	Citations
451	Adult moyamoya disease with peripheral artery involvement. Journal of Vascular Surgery, 2001, 34, 943-946.	1.1	12
452	Catching up with important players in atherosclerosis: type I interferons and neutrophils. Current Opinion in Lipidology, 2011, 22, 144-145.	2.7	12
453	Improving the treatment of atherosclerosis by linking anti-inflammatory and lipid modulating strategies: Table 1. Heart, 2012, 98, 1600-1606.	2.9	12
454	Response to Letter Regarding Article "Role of Extracellular RNA in Atherosclerotic Plaque Formation in Mice― Circulation, 2014, 130, e144-5.	1.6	12
455	Complying With the National Institutes of Health Guidelines and Principles for Rigor and Reproducibility. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1303-1304.	2.4	12
456	Comparative Analysis of Microfluidics Thrombus Formation in Multiple Genetically Modified Mice: Link to Thrombosis and Hemostasis. Frontiers in Cardiovascular Medicine, 2019, 6, 99.	2.4	12
457	High dose rosuvastatin increases ABCA1 transporter in human atherosclerotic plaques in a cholesterol-independent fashion. International Journal of Cardiology, 2020, 299, 249-253.	1.7	12
458	A MIFâ€Derived Cyclopeptide that Inhibits MIF Binding and Atherogenic Signaling via the Chemokine Receptor CXCR2. ChemBioChem, 2021, 22, 1012-1019.	2.6	12
459	Identification of Hypoxia Induced Metabolism Associated Genes in Pulmonary Hypertension. Frontiers in Pharmacology, 2021, 12, 753727.	3.5	12
460	Obstacles and options in the quest for drug candidates against vascular disease. Thrombosis and Haemostasis, 2010, 104, 1-3.	3.4	11
461	Non- invasive in vivo analysis of a murine aortic graft using high resolution ultrasound microimaging. European Journal of Radiology, 2012, 81, 244-249.	2.6	11
462	Optical Imaging Innovations for Atherosclerosis Research. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1339-1346.	2.4	11
463	Generation of Aorta Transcript Atlases of Wild-Type and Apolipoprotein E-null Mice by Laser Capture Microdissection-Based mRNA Expression Microarrays. Methods in Molecular Biology, 2015, 1339, 297-308.	0.9	11
464	Constitutive CD40 Signaling in Dendritic Cells Limits Atherosclerosis by Provoking Inflammatory Bowel Disease and Ensuing Cholesterol Malabsorption. American Journal of Pathology, 2017, 187, 2912-2919.	3.8	11
465	Editors' Choice 2016 papers in Thrombosis and Haemostasis. Thrombosis and Haemostasis, 2017, 117, 204-206.	3.4	11
466	$T\hat{l}^24$ Increases Neovascularization and Cardiac Function in Chronic Myocardial Ischemia of Normo- and Hypercholesterolemic Pigs. Molecular Therapy, 2018, 26, 1706-1714.	8.2	11
467	Glycans and Glycan-Binding Proteins in Atherosclerosis. Thrombosis and Haemostasis, 2019, 119, 1265-1273.	3.4	11
468	Glycoprotein VI is not a Functional Platelet Receptor for Fibrin Formed in Plasma or Blood. Thrombosis and Haemostasis, 2020, 120, 977-993.	3.4	11

#	Article	IF	CITATIONS
469	Sorting and magnetic-based isolation of reticulated platelets from peripheral blood. Platelets, 2021, 32, 113-119.	2.3	11
470	Effects of the Btk-Inhibitors Remibrutinib (LOU064) and Rilzabrutinib (PRN1008) With Varying Btk Selectivity Over Tec on Platelet Aggregation and in vitro Bleeding Time. Frontiers in Cardiovascular Medicine, 2021, 8, 749022.	2.4	11
471	Intravascular ultrasonic comparative analysis of degree of intimal hyperplasia produced by four different stents in the coronary arteries. American Journal of Cardiology, 2004, 94, 1548-1550.	1.6	10
472	Exchange of extracellular domains of CCR1 and CCR5 reveals confined functions in CCL5-mediated cell recruitment. Thrombosis and Haemostasis, 2013, 110, 795-806.	3.4	10
473	Human Neutrophil Peptide 1 Limits Hypercholesterolemia-induced Atherosclerosis by Increasing Hepatic LDL Clearance. EBioMedicine, 2017, 16, 204-211.	6.1	10
474	Steerable Induction of the Thymosin $\hat{1}^24/MRTF$ -A Pathway via AAV-Based Overexpression Induces Therapeutic Neovascularization. Human Gene Therapy, 2018, 29, 1407-1415.	2.7	10
475	Deletion of MFGE8 Inhibits Neointima Formation upon Arterial Damage. Thrombosis and Haemostasis, 2018, 118, 1340-1342.	3.4	10
476	Using Context-Sensitive Text Mining to Identify miRNAs in Different Stages of Atherosclerosis. Thrombosis and Haemostasis, 2019, 119, 1247-1264.	3.4	10
477	Interruption of the CXCL13/CXCR5 Chemokine Axis Enhances Plasma IgM Levels and Attenuates Atherosclerosis Development. Thrombosis and Haemostasis, 2020, 120, 344-347.	3.4	10
478	Role of the CX3C chemokine receptor CX3CR1 in the pathogenesis of atherosclerosis after aortic transplantation. PLoS ONE, 2017, 12, e0170644.	2.5	10
479	A Non-Canonical Link between Non-Coding RNAs and Cardiovascular Diseases. Biomedicines, 2022, 10, 445.	3.2	10
480	Endothelial ACKR3 drives atherosclerosis by promoting immune cell adhesion to vascular endothelium. Basic Research in Cardiology, 2022, 117, .	5.9	10
481	Central retinal artery occlusion in association with an aneurysm of the internal carotid artery. American Journal of Ophthalmology, 2001, 132, 270-271.	3.3	9
482	Endothelial progenitor cells: Cellular biomarkers in vascular disease. Drug Discovery Today Disease Mechanisms, 2008, 5, e267-e271.	0.8	9
483	A happy and prosperous New Year 2017 with "Thrombosis and Haemostasis―…. and our 60th Anniversary!. Thrombosis and Haemostasis, 2017, 117, 01-02.	3.4	9
484	The Actin Regulator Coronin-1A Modulates Platelet Shape Change and Consolidates Arterial Thrombosis. Thrombosis and Haemostasis, 2018, 118, 2098-2111.	3.4	9
485	Deficiency of Monoacylglycerol Lipase Enhances IgM Plasma Levels and Limits Atherogenesis in a CB2-Dependent Manner. Thrombosis and Haemostasis, 2019, 119, 348-351.	3.4	9
486	Intrinsic Cyclooxygenase Activity Is Not Required for Monocytic Differentiation of U937 Cells. Cellular Signalling, 1997, 9, 91-96.	3.6	8

#	Article	IF	CITATIONS
487	Evaluation of the BDCA2-DTR Transgenic Mouse Model in Chronic and Acute Inflammation. PLoS ONE, 2015, 10, e0134176.	2.5	8
488	A Happy New Year from Thrombosis and Haemostasis. A 5 year reflection from the Editorial team. Thrombosis and Haemostasis, 2015, 113, 1-2.	3.4	8
489	Myocardial Infarction and Inflammation. Circulation Research, 2015, 116, 781-783.	4.5	8
490	Annual Report on Sex in Preclinical Studies. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, e1-e9.	2.4	8
491	SARS-CoV-2, Cardiovascular Diseases, and Noncoding RNAs: A Connected Triad. International Journal of Molecular Sciences, 2021, 22, 12243.	4.1	8
492	Killing Two Birds With One Stone. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 2448-2450.	2.4	7
493	Potential cell-specific functions of CXCR4 in atherosclerosis. Hamostaseologie, 2016, 36, 97-102.	1.9	7
494	Cathelicidin regulates myeloid cell accumulation in adipose tissue and promotes insulin resistance during obesity. Thrombosis and Haemostasis, 2016, 115, 1237-1239.	3.4	7
495	Genomic determinants for initiation and length of natural antisense transcripts in Entamoeba histolytica. Scientific Reports, 2020, 10, 20190.	3.3	7
496	CD40L-CD40 fuel ignites obesity. Thrombosis and Haemostasis, 2010, 103, 694-695.	3.4	6
497	Atherosclerosis. Current Opinion in Lipidology, 2012, 23, 400-401.	2.7	6
498	Decreased pre-surgical CD34+/CD144+ cell number in patients undergoing coronary artery bypass grafting compared to coronary artery disease-free valvular patients. Journal of Cardiothoracic Surgery, 2012, 7, 2.	1.1	6
499	Expression of surface-associated 82kDa-proMMP-9 in primary acute leukemia blast cells inversely correlates with patients' risk. Experimental Hematology, 2016, 44, 358-362.e5.	0.4	6
500	The new age of radiomic risk profiling: perivascular fat at the heart of the matter. European Heart Journal, 2019, 40, 3544-3546.	2.2	6
501	Autophagy unleashes noncanonical microRNA functions. Autophagy, 2020, 16, 2294-2296.	9.1	6
502	Phosphorylation-Dependent Differences in CXCR4-LASP1-AKT1 Interaction between Breast Cancer and Chronic Myeloid Leukemia. Cells, 2020, 9, 444.	4.1	6
503	Chemokines take centre stage in vascular biology. Thrombosis and Haemostasis, 2007, 97, 685-687.	3.4	6
504	Functional ex-vivo Imaging of Arterial Cellular Recruitment and Lipid Extravasation. Bio-protocol, 2017, 7, .	0.4	6

#	Article	IF	CITATIONS
505	Murine bone marrow macrophages and human monocytes do not express atypical chemokine receptor 1. Cell Stem Cell, 2022, 29, 1013-1015.	11.1	6
506	Complement activation in vascular remodeling and organ damage. Drug Discovery Today Disease Mechanisms, 2008, 5, e299-e306.	0.8	5
507	Thrombosis and Haemostasis: Past, present and future. Thrombosis and Haemostasis, 2017, 117, 1217-1218.	3.4	5
508	Mitochondrial Ejection for Cardiac Protection: The Macrophage Connection. Cell Metabolism, 2020, 32, 512-513.	16.2	5
509	Laser Capture Microdissection–Based mRNA Expression Microarrays and Single-Cell RNA Sequencing in Atherosclerosis Research. Methods in Molecular Biology, 2022, 2419, 715-726.	0.9	5
510	Tissue Clearing Approaches in Atherosclerosis. Methods in Molecular Biology, 2022, 2419, 747-763.	0.9	5
511	Combined Single-Cell RNA and Single-Cell $\hat{l}\pm\hat{l}^2$ T Cell Receptor Sequencing of the Arterial Wall in Atherosclerosis. Methods in Molecular Biology, 2022, 2419, 727-746.	0.9	5
512	Regulatory T Cell-Related Gene Indicators in Pulmonary Hypertension. Frontiers in Pharmacology, 0, 13, .	3.5	5
513	Frontiers of vascular biology: Mechanisms of inflammation and immunoregulation during arterial remodelling. Thrombosis and Haemostasis, 2009, 102, 188-190.	3.4	4
514	Fractalkine as an Important Target of Aspirin in the Prevention of Atherogenesis. Cardiovascular Drugs and Therapy, 2010, 24, 1-3.	2.6	4
515	New horizons in vascular biology and thrombosis: Highlights from EMVBM 2009. Thrombosis and Haemostasis, 2010, 104, 421-423.	3.4	4
516	Repetitive transplantation of different cell types sequentially improves heart function after infarction. Journal of Cellular and Molecular Medicine, 2012, 16, 1640-1647.	3.6	4
517	The ADAM17 Metalloproteinase Maintains Arterial Elasticity. Thrombosis and Haemostasis, 2018, 118, 210-213.	3.4	4
518	Next-Generation Therapeutic Concepts for Atherosclerosis: Focus on Cell Specificity and Noncoding RNAs. Thrombosis and Haemostasis, 2019, 119, 1199-1201.	3.4	4
519	A Toast to the Last Decade and a Very Happy 2020 from Thrombosis and Haemostasis!. Thrombosis and Haemostasis, 2020, 120, 001-004.	3.4	4
520	Thrombosis and Haemostasis 2020 Editors' Choice Papers. Thrombosis and Haemostasis, 2021, 121, 109-114.	3.4	4
521	Looking Back on 2020, Looking Forward to 2021. Thrombosis and Haemostasis, 2021, 121, 001-003.	3.4	4
522	Adipocyte-Specific ACKR3 Regulates Lipid Levels in Adipose Tissue. Biomedicines, 2021, 9, 394.	3.2	4

#	Article	IF	Citations
523	Adipocyte calcium sensing receptor is not involved in visceral adipose tissue inflammation or atherosclerosis development in hyperlipidemic Apoeâ°//â° mice. Scientific Reports, 2021, 11, 10409.	3.3	4
524	Transcriptome signature of miRNA-26b KO mouse model suggests novel targets. BMC Genomic Data, 2021, 22, 23.	1.7	4
525	MicroRNA-26b Attenuates Platelet Adhesion and Aggregation in Mice. Biomedicines, 2022, 10, 983.	3.2	4
526	Role of Microparticles as Messengers Enhancing Stem Cell Activity After Genetic Engineering. Circulation Research, 2012, 111, 265-267.	4.5	3
527	Recurrent spontaneous coronary dissections in a patient with a de novo fibrillin-1 mutation without Marfan syndrome. Thrombosis and Haemostasis, 2015, 113, 668-670.	3.4	3
528	Metabolomic profiling of atherosclerotic plaques: towards improved cardiovascular risk stratification. European Heart Journal, 2018, 39, 2311-2313.	2.2	3
529	Response by Daugherty et al to Letter Regarding Article, "Consideration of Sex Differences in Design and Reporting of Experimental Arterial Pathology Studies: A Statement From the Arteriosclerosis, Thrombosis, and Vascular Biology Council― Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, e101-e102.	2.4	3
530	Immunotherapy for Atherosclerosisâ€"Novel Concepts. Thrombosis and Haemostasis, 2019, 119, 515-516.	3.4	3
531	Thrombosis and Haemostasis Wishes You a Happy New Year Ahead!. Thrombosis and Haemostasis, 2019, 119, 001-002.	3.4	3
532	Thrombosis and Haemostasis 2018 Editor's Choice Papers. Thrombosis and Haemostasis, 2019, 119, 183-186.	3.4	3
533	Non-activatable mutant of inhibitor of kappa B kinase \hat{l} ± (IKK \hat{l} ±) exerts vascular site-specific effects on atherosclerosis in Apoe-deficient mice. Atherosclerosis, 2020, 292, 23-30.	0.8	3
534	Thrombosis and Haemostasis 2019 Editor's Choice Papers. Thrombosis and Haemostasis, 2020, 120, 184-190.	3.4	3
535	Rafs constitute a nodal point in the regulation of embryonic endothelial progenitor cell growth and differentiation. Journal of Cellular and Molecular Medicine, 2007, 11, 1395-1407.	3.6	2
536	MIF and the Chemokine Axis., 2012,, 23-53.		2
537	Protein lysineâ€Nζ alkylation and <i>O</i> â€phosphorylation mediated by DTTâ€generated reactive oxygen species. Protein Science, 2013, 22, 327-346.	7.6	2
538	MicroRNA-155 and macrophages: a fatty liaison. Cardiovascular Research, 2014, 103, 5-6.	3.8	2
539	Atherosclerosis. Current Opinion in Lipidology, 2015, 26, 245-246.	2.7	2
540	DNA methylation and epigenetics: exploring the terra incognita of the atherosclerotic landscape. European Heart Journal, 2015, 36, 956-958.	2.2	2

#	Article	lF	CITATIONS
541	Atherosclerosis. Current Opinion in Lipidology, 2017, 28, 220-221.	2.7	2
542	Thrombosis and Haemostasis 2021 Editors' Choice Papers. Thrombosis and Haemostasis, 2022, 122, 163-170.	3.4	2
543	Web of Science's Citation Median Metrics Overcome the Major Constraints of the Journal Impact Factor. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 367-371.	2.4	2
544	RNA Sequencing Reveals Widespread Transcription of Natural Antisense RNAs in Entamoeba Species. Microorganisms, 2022, 10, 396.	3.6	2
545	Properties and fate of human mesenchymal stem cells upon miRNA let-7f-promoted recruitment to atherosclerotic plaques. Cardiovascular Research, 2023, 119, 155-166.	3.8	2
546	Relationship of Five Inflammatory Gene Polymorphisms with Morbidity and Mortality in 533 Patients Admitted to an ICU. Inflammation, 2006, 29, 65-71.	3.8	1
547	Leptin and EPCs in Arterial Injury. Circulation Research, 2008, 103, 447-449.	4.5	1
548	Atherosclerosis: cell biology and lipoproteins. Current Opinion in Lipidology, 2010, 21, 284-285.	2.7	1
549	C5a receptor targeting in neointima formation after arterial injury in atherosclerosis-prone mice. Molecular Immunology, 2010, 47, 2207-2207.	2.2	1
550	Bone Marrow–Derived Smooth Muscle Cells Are Breaking Bad in Atherogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1258-1259.	2.4	1
551	MIF in Atherosclerosis., 2012,, 321-345.		1
552	Smooth Muscle Progenitor Cells. , 2012, , 1391-1400.		1
553	RANK(L)-ing biomarkers as surrogates for coronary calcium score. Thrombosis and Haemostasis, 2012, 107, 3-3.	3.4	1
554	First degree cohomology of Specht modules over fields of odd prime characteristic. Journal of Algebra, 2013, 392, 23-41.	0.7	1
555	Atherosclerosis. Current Opinion in Lipidology, 2013, 24, 187-188.	2.7	1
556	Editors' Choice 2015 papers in Thrombosis and Haemostasis. Thrombosis and Haemostasis, 2016, 115, 230-232.	3.4	1
557	Editors' Choice in the 60th Anniversary Year of Thrombosis and Haemostasis: Past, Present and Future. Thrombosis and Haemostasis, 2018, 118, 225-227.	3.4	1
558	A Happy New Year from a 60-Year-Old Journal †Thrombosis and Haemostasis'!. Thrombosis and Haemostasis, 2018, 118, 001-003.	3.4	1

#	Article	IF	CITATIONS
559	Documenting Sex and Sex Differences in Animal Studies. Thrombosis and Haemostasis, 2020, 120, 879-882.	3.4	1
560	Seeing is repairing: how imaging-based timely interference with CXCR4 could improve repair after myocardial infarction. European Heart Journal, 2020, 41, 3576-3578.	2.2	1
561	A Rollercoaster Plunge into 2022. Thrombosis and Haemostasis, 2022, 122, 001-004.	3.4	1
562	Thienopyridines in Percutaneous Coronary Interventions: Standard Procedures and High Risk Subsets. Current Pharmaceutical Design, 2006, 12, 1281-1286.	1.9	0
563	MIF and Atherosclerosis., 2007,, 217-228.		O
564	Inflammatory Blues Turns Velvet Skin Into Rawhide. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 990-992.	2.4	0
565	P92. Septic cardiomyopathy: Role of iNOS and eNOS in a murine model of sepsis. Nitric Oxide - Biology and Chemistry, 2008, 19, 64-65.	2.7	0
566	Nitric Oxide-Donating Statins Upgrade the Benefits of Lipid-Lowering in Vascular Inflammation by Desensitizing Neutrophil Activation. Cardiovascular Drugs and Therapy, 2013, 27, 183-185.	2.6	0
567	Atherosclerosis. Current Opinion in Lipidology, 2014, 25, 408-409.	2.7	0
568	MO046NON-ACTIVATABLE MUTANT OF INHIBITOR OF KAPPA B KINASE $\hat{l}\pm$ (IKK $\hat{l}\pm$) EXERTS SITE-SPECIFIC EFFECTS ON ATHEROSCLEROSIS. Nephrology Dialysis Transplantation, 2016, 31, i48-i48.	0.7	0
569	Atherosclerosis. Current Opinion in Lipidology, 2016, 27, 308-309.	2.7	0
570	Introducing Our New Offspring Journal … TH Open. TH Open, 2017, 01, e1-e2.	1.4	0
571	The ESC Council on Basic Cardiovascular Science. European Heart Journal, 2020, 41, 1227-1230.	2.2	0
572	Not all myocardial infarctions are created equal: The potential of circulating microRNAs to discern coronary artery dissection. EBioMedicine, 2021, 67, 103366.	6.1	0
573	Platelet Cytokines and Vascular Diseases. Blood, 2011, 118, SCI-36-SCI-36.	1.4	0
574	Frontiers of CardioVascular Biomedicine 2022 Budapest is on in person! The excellent program proves that scientists won against Covid-19. Cardiovascular Research, 2022, , .	3.8	0
575	Jam-A Unleashed Incites Thromboinflammatory Coronary Artery Disease. JACC Basic To Translational Science, 2022, 7, 462-464.	4.1	0