Chad M Thompson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3480264/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Crypt and Villus Transcriptomic Responses in Mouse Small Intestine Following Oral Exposure to Hexavalent Chromium. Toxicological Sciences, 2022, 186, 43-57.	3.1	1
2	Assessment of Mechanistic Data for Hexavalent Chromium-Induced Rodent Intestinal Cancer Using the Key Characteristics of Carcinogens. Toxicological Sciences, 2021, 180, 38-50.	3.1	12
3	Inhalation cancer risk assessment for environmental exposure to hexavalent chromium: Comparison of margin-of-exposure and linear extrapolation approaches. Regulatory Toxicology and Pharmacology, 2021, 124, 104969.	2.7	4
4	Development of updated RfD and RfC values for medium carbon range aromatic and aliphatic total petroleum hydrocarbon fractions. Journal of the Air and Waste Management Association, 2021, 71, 1-13.	1.9	1
5	A review of mammalian <i>inÂvivo</i> genotoxicity of hexavalent chromium: implications for oral carcinogenicity risk assessment. Critical Reviews in Toxicology, 2021, 51, 820-849.	3.9	4
6	An adverse outcome pathway for small intestinal tumors in mice involving chronic cytotoxicity and regenerative hyperplasia: a case study with hexavalent chromium, captan, and folpet. Critical Reviews in Toxicology, 2020, 50, 685-706.	3.9	20
7	Assessment of the Mode of Action Underlying the Effects of GenX in Mouse Liver and Implications for Assessing Human Health Risks. Toxicologic Pathology, 2020, 48, 494-508.	1.8	40
8	Exposure to environmentally-relevant concentrations of hexavalent chromium does not induce ovarian toxicity in mice. Regulatory Toxicology and Pharmacology, 2020, 116, 104729.	2.7	8
9	Comparison of threshold of toxicological concern (TTC) values to oral reference dose (RfD) values. Regulatory Toxicology and Pharmacology, 2020, 113, 104651.	2.7	11
10	Using mechanistic information to support evidence integration and synthesis: a case study with inhaled formaldehyde and leukemia. Critical Reviews in Toxicology, 2020, 50, 885-918.	3.9	6
11	An updated mode of action and human relevance framework evaluation for Formaldehyde-Related nasal tumors. Critical Reviews in Toxicology, 2020, 50, 919-952.	3.9	7
12	Comparison of Gene Expression Responses in the Small Intestine of Mice Following Exposure to 3 Carcinogens Using the S1500+ Gene Set Informs a Potential Common Adverse Outcome Pathway. Toxicologic Pathology, 2019, 47, 851-864.	1.8	9
13	Development of an oral reference dose for the perfluorinated compound GenX. Journal of Applied Toxicology, 2019, 39, 1267-1282.	2.8	22
14	Considerations for refining the risk assessment process for formaldehyde: Results from an interdisciplinary workshop. Regulatory Toxicology and Pharmacology, 2019, 106, 210-223.	2.7	19
15	Review of transcriptomic responses to hexavalent chromium exposure in lung cells supports a role of epigenetic mediators in carcinogenesis. Toxicology Letters, 2019, 305, 40-50.	0.8	60
16	Dose-dependence of chemical carcinogenicity: Biological mechanisms for thresholds and implications for risk assessment. Chemico-Biological Interactions, 2019, 301, 112-127.	4.0	29
17	Hexavalent Chromium in Drinking Water. Journal - American Water Works Association, 2018, 110, E22.	0.3	49
18	Integration of mechanistic and pharmacokinetic information to derive oral reference dose and marginâ€ofâ€exposure values for hexavalent chromium. Journal of Applied Toxicology, 2018, 38, 351-365.	2.8	19

Chad M Thompson

#	Article	IF	CITATIONS
19	Commentary on New Formaldehyde Studies in Trp53 Haploinsufficient Mice: Further Support for Nonlinear Risks From Inhaled Formaldehyde. Dose-Response, 2018, 16, 155932581877793.	1.6	1
20	Assessment of the mode of action underlying development of forestomach tumors in rodents following oral exposure to ethyl acrylate and relevance to humans. Regulatory Toxicology and Pharmacology, 2018, 96, 178-189.	2.7	5
21	High-Throughput Screening Data Interpretation in the Context of In Vivo Transcriptomic Responses to Oral Cr(VI) Exposure. Toxicological Sciences, 2017, 158, 199-212.	3.1	21
22	Ten factors for considering the mode of action of Cr(VI)-induced gastrointestinal tumors in rodents. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2017, 823, 45-57.	1.7	13
23	Benchmark Dose Modeling Estimates of the Concentrations of Inorganic Arsenic That Induce Changes to the Neonatal Transcriptome, Proteome, and Epigenome in a Pregnancy Cohort. Chemical Research in Toxicology, 2017, 30, 1911-1920.	3.3	38
24	Comparison of Toxicity and Recovery in the Duodenum of B6C3F1 Mice Following Treatment with Intestinal Carcinogens Captan, Folpet, and Hexavalent Chromium. Toxicologic Pathology, 2017, 45, 1091-1101.	1.8	15
25	Assessment of the mutagenic potential of hexavalent chromium in the duodenum of big blue® rats. Toxicology and Applied Pharmacology, 2017, 330, 48-52.	2.8	25
26	Transcriptomic responses in the oral cavity of F344 rats and <scp>B6C3F1</scp> mice following exposure to Cr(VI): Implications for risk assessment. Environmental and Molecular Mutagenesis, 2016, 57, 706-716.	2.2	13
27	Comparison of in vivo genotoxic and carcinogenic potency to augment mode of action analysis: Case study with hexavalent chromium. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2016, 800-801, 28-34.	1.7	17
28	Development of linear and threshold no significant risk levels for inhalation exposure to titanium dioxide using systematic review and mode of action considerations. Regulatory Toxicology and Pharmacology, 2016, 80, 60-70.	2.7	15
29	Reevaluation and Classification of Duodenal Lesions in B6C3F1 Mice and F344 Rats from 4 Studies of Hexavalent Chromium in Drinking Water. Toxicologic Pathology, 2016, 44, 279-289.	1.8	15
30	Assessment of the mutagenic potential of Cr(VI) in the oral mucosa of Big Blue [®] transgenic F344 rats. Environmental and Molecular Mutagenesis, 2015, 56, 621-628.	2.2	26
31	A robust method for assessing chemically induced mutagenic effects in the oral cavity of transgenic Big Blue® rats. Environmental and Molecular Mutagenesis, 2015, 56, 629-636.	2.2	7
32	Synchrotron-Based Imaging of Chromium and Î ³ -H2AX Immunostaining in the Duodenum Following Repeated Exposure to Cr(VI) in Drinking Water. Toxicological Sciences, 2015, 143, 16-25.	3.1	39
33	Duodenal crypt health following exposure to Cr(VI): Micronucleus scoring, Î ³ -H2AX immunostaining, and synchrotron X-ray fluorescence microscopy. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2015, 789-790, 61-66.	1.7	26
34	A chronic oral reference dose for hexavalent chromiumâ€induced intestinal cancer. Journal of Applied Toxicology, 2014, 34, 525-536.	2.8	123
35	Assessment of the mode of action for hexavalent chromium-induced lung cancer following inhalation exposures. Toxicology, 2014, 325, 160-179.	4.2	99
36	High concentrations of hexavalent chromium in drinking water alter iron homeostasis in F344 rats and B6C3F1 mice. Food and Chemical Toxicology, 2014, 65, 381-388.	3.6	23

CHAD M THOMPSON

#	Article	IF	CITATIONS
37	Assessment of K-Ras mutant frequency and micronucleus incidence in the mouse duodenum following 90-days of exposure to Cr(VI) in drinking water. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2013, 754, 15-21.	1.7	35
38	An approach for integrating toxicogenomic data in risk assessment: The dibutyl phthalate case study. Toxicology and Applied Pharmacology, 2013, 271, 324-335.	2.8	16
39	Utilizing toxicogenomic data to understand chemical mechanism of action in risk assessment. Toxicology and Applied Pharmacology, 2013, 271, 299-308.	2.8	47
40	Development of a chronic noncancer oral reference dose and drinking water screening level for sulfolane using benchmark dose modeling. Journal of Applied Toxicology, 2013, 33, 1395-1406.	2.8	14
41	Assessment of the mode of action underlying development of rodent small intestinal tumors following oral exposure to hexavalent chromium and relevance to humans. Critical Reviews in Toxicology, 2013, 43, 244-274.	3.9	66
42	A Genomics-Based Analysis of Relative Potencies of Dioxin-Like Compounds in Primary Rat Hepatocytes. Toxicological Sciences, 2013, 136, 595-604.	3.1	12
43	Duodenal GSH/GSSG Ratios in Mice Following Oral Exposure to Cr(VI). Toxicological Sciences, 2012, 126, 287-288.	3.1	0
44	Assessment of Cr(VI)-Induced Cytotoxicity and Genotoxicity Using High Content Analysis. PLoS ONE, 2012, 7, e42720.	2.5	61
45	Comparison of the Effects of Hexavalent Chromium in the Alimentary Canal of F344 Rats and B6C3F1 Mice Following Exposure in Drinking Water: Implications for Carcinogenic Modes of Action. Toxicological Sciences, 2012, 125, 79-90.	3.1	55
46	Assessment of genotoxic potential of Cr(VI) in the mouse duodenum: An in silico comparison with mutagenic and nonmutagenic carcinogens across tissues. Regulatory Toxicology and Pharmacology, 2012, 64, 68-76.	2.7	15
47	Hexavalent chromium reduction kinetics in rodent stomach contents. Chemosphere, 2012, 89, 487-493.	8.2	34
48	Genome-wide gene expression effects in B6C3F1 mouse intestinal epithelia following 7 and 90 days of exposure to hexavalent chromium in drinking water. Toxicology and Applied Pharmacology, 2012, 259, 13-26.	2.8	45
49	Comparative toxicogenomic analysis of oral Cr(VI) exposure effects in rat and mouse small intestinal epithelia. Toxicology and Applied Pharmacology, 2012, 262, 124-138.	2.8	29
50	A response to "A quantitative assessment of the carcinogenicity of hexavalent chromium by the oral route and its relevance to human exposure― Environmental Research, 2011, 111, 468-470.	7.5	5
51	Considerations for the Implausibility of Leukemia Induction by Formaldehyde. Toxicological Sciences, 2011, 120, 230-232.	3.1	5
52	Investigation of the Mode of Action Underlying the Tumorigenic Response Induced in B6C3F1 Mice Exposed Orally to Hexavalent Chromium. Toxicological Sciences, 2011, 123, 58-70.	3.1	81
53	Application of the U.S. EPA Mode of Action Framework for Purposes of Guiding Future Research: A Case Study Involving the Oral Carcinogenicity of Hexavalent Chromium. Toxicological Sciences, 2011, 119, 20-40.	3.1	63
54	Formaldehyde dehydrogenase: Beyond phase I metabolism. Toxicology Letters, 2010, 193, 1-3.	0.8	33

CHAD M THOMPSON

#	Article	IF	CITATIONS
55	The Ontogeny, Distribution, and Regulation of Alcohol Dehydrogenase 3: Implications for Pulmonary Physiology. Drug Metabolism and Disposition, 2009, 37, 1565-1571.	3.3	18
56	Commentary: mechanistic considerations for associations between formaldehyde exposure and nasopharyngeal carcinoma. Environmental Health, 2009, 8, 53.	4.0	7
57	A lifestageâ€specific approach to hazard and doseâ€response characterization for children's health risk assessment. Birth Defects Research Part B: Developmental and Reproductive Toxicology, 2008, 83, 530-546.	1.4	22
58	Uncertainties in Biologicallyâ€Based Modeling of Formaldehydeâ€Induced Respiratory Cancer Risk: Identification of Key Issues. Risk Analysis, 2008, 28, 907-923.	2.7	13
59	Renal clearance parameters for PBPK model analysis of early lifestage differences in the disposition of environmental toxicants. Regulatory Toxicology and Pharmacology, 2008, 51, 66-86.	2.7	49
60	Mechanistic and dose considerations for supporting adverse pulmonary physiology in response to formaldehyde. Toxicology and Applied Pharmacology, 2008, 233, 355-359.	2.8	26
61	Mechanistic Considerations For Formaldehyde-Induced Bronchoconstriction Involving <i>S</i> -Nitrosoglutathione Reductase. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2007, 71, 244-248.	2.3	15
62	Evaluation of physiologically based pharmacokinetic models for use in risk assessment. Journal of Applied Toxicology, 2007, 27, 218-237.	2.8	130
63	Activation of G-Proteins by Morphine and Codeine Congeners: Insights to the Relevance of <i>O</i> - and <i>N</i> -Demethylated Metabolites at μ- and δ-Opioid Receptors. Journal of Pharmacology and Experimental Therapeutics, 2004, 308, 547-554.	2.5	84
64	Isolation of Partially Purified P450 2D18 and Characterization of Activity toward the Tricyclic Antidepressants Imipramine and Desipramine. Archives of Biochemistry and Biophysics, 1998, 359, 115-121.	3.0	9
65	The Vesicle Transport Protein Vps33p Is an ATP-binding Protein That Localizes to the Cytosol in an Energy-dependent Manner. Journal of Biological Chemistry, 1998, 273, 15818-15829.	3.4	53
66	Protein Expression, Characterization, and Regulation ofCYP4F4andCYP4F5Cloned from Rat Brain. Archives of Biochemistry and Biophysics, 1997, 347, 148-154.	3.0	66
67	Barbiturate-induced expression of neuronal nitric oxide synthase in the rat cerebellum. Brain Research, 1997, 754, 142-146.	2.2	15
68	Evaluation of Transcriptomic Responses in Livers of Mice Exposed to the Short-Chain PFAS Compound HFPO-DA. Frontiers in Toxicology, 0, 4, .	3.1	8