## Hiroaki Tatebe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3480192/publications.pdf Version: 2024-02-01



HIDOAKI TATERE

| #  | Article                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Transient Influence of the Reduction of Deepwater Formation on Ocean Heat Uptake and Heat Budgets<br>in the Global Climate System. Geophysical Research Letters, 2022, 49, .                                                            | 4.0  | 2         |
| 2  | Enhanced Arctic warming amplification revealed in a low-emission scenario. Communications Earth & Environment, 2022, 3, .                                                                                                               | 6.8  | 15        |
| 3  | WMO Global Annual to Decadal Climate Update: A Prediction for 2021–25. Bulletin of the American<br>Meteorological Society, 2022, 103, E1117-E1129.                                                                                      | 3.3  | 20        |
| 4  | Enhanced warming constrained by past trends in equatorial Pacific sea surface temperature gradient.<br>Nature Climate Change, 2021, 11, 33-37.                                                                                          | 18.8 | 58        |
| 5  | PMIP4 experiments using MIROC-ES2L Earth system model. Geoscientific Model Development, 2021, 14, 1195-1217.                                                                                                                            | 3.6  | 22        |
| 6  | Climate model projections from the Scenario Model Intercomparison ProjectÂ(ScenarioMIP) of CMIP6.<br>Earth System Dynamics, 2021, 12, 253-293.                                                                                          | 7.1  | 236       |
| 7  | The Gulf Stream and Kuroshio Current are synchronized. Science, 2021, 374, 341-346.                                                                                                                                                     | 12.6 | 12        |
| 8  | ASSESSMENT OF THE NATURAL VARIABILITY COMPONENTS IN LOCAL SEA LEVEL AROUND THE EAST ASIA<br>USING MIROC6 PROJECTIONS. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering),<br>2021, 77, I_967-I_972.               | 0.4  | 0         |
| 9  | Seasonal to Decadal Predictions With MIROC6: Description and Basic Evaluation. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002035.                                                                                  | 3.8  | 19        |
| 10 | On the Emergence of the Atlantic Multidecadal SST Signal: A Key Role of the Mixed Layer Depth<br>Variability Driven by North Atlantic Oscillation. Journal of Climate, 2020, 33, 3511-3531.                                             | 3.2  | 10        |
| 11 | Impact of sea-ice thickness initialized in April on Arctic sea-ice extent predictability with the MIROC climate model. Annals of Glaciology, 2020, 61, 97-105.                                                                          | 1.4  | 6         |
| 12 | Control of transient climate response and associated sea level rise by deep-ocean mixing.<br>Environmental Research Letters, 2020, 15, 094001.                                                                                          | 5.2  | 2         |
| 13 | Millennium time-scale experiments on climate-carbon cycle with doubled CO2 concentration.<br>Progress in Earth and Planetary Science, 2020, 7, .                                                                                        | 3.0  | 2         |
| 14 | Future dynamic sea level change in the western subtropical North Pacific associated with ocean heat<br>uptake and heat redistribution by ocean circulation under global warming. Progress in Earth and<br>Planetary Science, 2020, 7, . | 3.0  | 5         |
| 15 | Impact of air–sea coupling on the probability of occurrence of heat waves in Japan. Progress in Earth<br>and Planetary Science, 2020, 7, .                                                                                              | 3.0  | 3         |
| 16 | Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks. Geoscientific Model Development, 2020, 13, 2197-2244.                                                                    | 3.6  | 245       |
| 17 | Evaluation of global ocean–sea-ice model simulations based on the experimental protocols of the<br>Ocean Model Intercomparison Project phase 2 (OMIP-2). Geoscientific Model Development, 2020, 13,<br>3643-3708.                       | 3.6  | 99        |
| 18 | Importance of El Niño reproducibility for reconstructing historical<br>CO <sub>2</sub> flux variations in the equatorial Pacific. Ocean Science,<br>2020, 16, 1431-1442.                                                                | 3.4  | 4         |

HIROAKI TATEBE

| #  | Article                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | UNCERTAINTY IN REGIONAL SEA LEVEL RISE DUE TO CLIMATE CHANGE AROUND JAPAN. Journal of Japan<br>Society of Civil Engineers Ser B2 (Coastal Engineering), 2020, 76, I_1135-I_1140.         | 0.4 | 0         |
| 20 | Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geoscientific Model Development, 2019, 12, 2727-2765.                 | 3.6 | 439       |
| 21 | Reconciling roles of sulphate aerosol forcing and internal variability in Atlantic multidecadal climate changes. Climate Dynamics, 2019, 53, 4651-4665.                                  | 3.8 | 58        |
| 22 | Wind–Mixed Layer–SST Feedbacks in a Tropical Air–Sea Coupled System: Application to the Atlantic.<br>Journal of Climate, 2019, 32, 3865-3881.                                            | 3.2 | 9         |
| 23 | Mechanisms for and Predictability of a Drastic Reduction in the Arctic Sea Ice: APPOSITE Data with Climate Model MIROC. Journal of Climate, 2019, 32, 1361-1380.                         | 3.2 | 3         |
| 24 | The Importance of Ocean Dynamical Feedback for Understanding the Impact of Mid–High-Latitude<br>Warming on Tropical Precipitation Change. Journal of Climate, 2018, 31, 2417-2434.       | 3.2 | 8         |
| 25 | Possible relationship between Pacific interdecadal climate variability and the periodic 18.6-year tidal oscillation in the ocean. Oceanography in Japan, 2018, 27, 3-18.                 | 0.5 | 0         |
| 26 | Preface of the special Issue "Toward the evaluation of oceanic tidal impacts on the ocean, climate, and fishery resources― Oceanography in Japan, 2018, 27, 1-1.                         | 0.5 | 0         |
| 27 | Impact of deep ocean mixing on the climatic mean state in the Southern Ocean. Scientific Reports, 2018,<br>8, 14479.                                                                     | 3.3 | 32        |
| 28 | Roles of Shallow Convective Moistening in the Eastward Propagation of the MJO in MIROC6. Journal of Climate, 2018, 31, 3033-3047.                                                        | 3.2 | 16        |
| 29 | Mechanisms influencing seasonal to inter-annual prediction skill of sea ice extent in the Arctic Ocean in MIROC. Cryosphere, 2018, 12, 675-683.                                          | 3.9 | 13        |
| 30 | A Maddenâ€Julian Oscillation event remotely accelerates ocean upwelling to abruptly terminate the<br>1997/1998 super El Niño. Geophysical Research Letters, 2017, 44, 9489-9495.         | 4.0 | 19        |
| 31 | Atmospheric Responses and Feedback to the Meridional Ocean Heat Transport in the North Pacific.<br>Journal of Climate, 2017, 30, 5715-5728.                                              | 3.2 | 2         |
| 32 | Effectiveness and limitations of parameter tuning in reducing biases of top-of-atmosphere radiation and clouds in MIROC version 5. Geoscientific Model Development, 2017, 10, 4647-4664. | 3.6 | 10        |
| 33 | Downscaling Global Emissions and Its Implications Derived from Climate Model Experiments. PLoS ONE, 2017, 12, e0169733.                                                                  | 2.5 | 15        |
| 34 | The Arctic Predictability and Prediction on Seasonal-to-Interannual TimEscales (APPOSITE) data set versionÂ1. Geoscientific Model Development, 2016, 9, 2255-2270.                       | 3.6 | 26        |
| 35 | South Pacific influence on the termination of El Niño in 2014. Scientific Reports, 2016, 6, 30341.                                                                                       | 3.3 | 21        |
| 36 | Predictability of Two Types of El Niño Assessed Using an Extended Seasonal Prediction System by<br>MIROC. Monthly Weather Review, 2015, 143, 4597-4617.                                  | 1.4 | 33        |

HIROAKI TATEBE

| #  | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Contribution of natural decadal variability to global warming acceleration and hiatus. Nature<br>Climate Change, 2014, 4, 893-897.                                                                                                | 18.8 | 179       |
| 38 | An overview of decadal climate predictability in a multi-model ensemble by climate model MIROC.<br>Climate Dynamics, 2013, 40, 1201-1222.                                                                                         | 3.8  | 67        |
| 39 | Control of Decadal and Bidecadal Climate Variability in the Tropical Pacific by the Off-Equatorial<br>South Pacific Ocean. Journal of Climate, 2013, 26, 6524-6534.                                                               | 3.2  | 23        |
| 40 | Hindcast Prediction and Near-Future Projection of Tropical Cyclone Activity over the Western North<br>Pacific Using CMIP5 Near-Term Experiments with MIROC. Journal of the Meteorological Society of<br>Japan, 2013, 91, 431-452. | 1.8  | 15        |
| 41 | Multi-Decadal Modulation of Tropical Pacific Instability Wave Activity since the Middle of the<br>Twentieth Century. Scientific Online Letters on the Atmosphere, 2013, 9, 102-105.                                               | 1.4  | 2         |
| 42 | Effects of the 18.6-yr Modulation of Tidal Mixing on the North Pacific Bidecadal Climate Variability in a Coupled Climate Model. Journal of Climate, 2012, 25, 7625-7642.                                                         | 3.2  | 43        |
| 43 | MIROC4h—A New High-Resolution Atmosphere-Ocean Coupled General Circulation Model. Journal of the Meteorological Society of Japan, 2012, 90, 325-359.                                                                              | 1.8  | 146       |
| 44 | Decadal Prediction Using a Recent Series of MIROC Global Climate Models. Journal of the Meteorological Society of Japan, 2012, 90A, 373-383.                                                                                      | 1.8  | 60        |
| 45 | Predictability of a Stepwise Shift in Pacific Climate during the Late 1990s in Hindcast Experiments Using MIROC. Journal of the Meteorological Society of Japan, 2012, 90A, 1-21.                                                 | 1.8  | 26        |
| 46 | The Initialization of the MIROC Climate Models with Hydrographic Data Assimilation for Decadal Prediction. Journal of the Meteorological Society of Japan, 2012, 90A, 275-294.                                                    | 1.8  | 63        |
| 47 | Impact of the Assimilation of Sea Ice Concentration Data on an Atmosphere-Ocean-Sea Ice Coupled Simulation of the Arctic Ocean Climate. Scientific Online Letters on the Atmosphere, 2011, 7, 37-40.                              | 1.4  | 8         |
| 48 | Pacific decadal oscillation hindcasts relevant to near-term climate prediction. Proceedings of the<br>National Academy of Sciences of the United States of America, 2010, 107, 1833-1837.                                         | 7.1  | 189       |
| 49 | Improved Climate Simulation by MIROC5: Mean States, Variability, and Climate Sensitivity. Journal of Climate, 2010, 23, 6312-6335.                                                                                                | 3.2  | 1,103     |
| 50 | Horizontal transport of the calanoid copepod Neocalanus in the North Pacific: The influences of the<br>current system and the life history. Deep-Sea Research Part I: Oceanographic Research Papers, 2010, 57,<br>409-419.        | 1.4  | 14        |
| 51 | Progress of North Pacific modeling over the past decade. Deep-Sea Research Part II: Topical Studies in<br>Oceanography, 2010, 57, 1188-1200.                                                                                      | 1.4  | 25        |
| 52 | Formation mechanism of the Pacific equatorial thermocline revealed by a general circulation model with a high accuracy tracer advection scheme. Ocean Modelling, 2010, 35, 245-252.                                               | 2.4  | 21        |
| 53 | Transport of subarctic large copepods from the Oyashio area to the mixed water region by the coastal Oyashio intrusion. Fisheries Oceanography, 2009, 18, 312-327.                                                                | 1.7  | 25        |
| 54 | Pacific bidecadal climate variability regulated by tidal mixing around the Kuril Islands. Geophysical Research Letters, 2008, 35, .                                                                                               | 4.0  | 35        |

HIROAKI TATEBE

| #  | Article                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Possible explanation linking 18.6-year period nodal tidal cycle with bi-decadal variations of ocean and climate in the North Pacific. Geophysical Research Letters, 2006, 33, . | 4.0 | 69        |
| 56 | Numerical Experiments on the Seasonal Variations of the Oyashio near the East Coast of Japan. Journal of Physical Oceanography, 2005, 35, 2309-2326.                            | 1.7 | 7         |
| 57 | Interdecadal variations of the coastal Oyashio from the 1970s to the early 1990s. Geophysical Research<br>Letters, 2005, 32, .                                                  | 4.0 | 16        |
| 58 | Oyashio Southward Intrusion and Cross-Gyre Transport Related to Diapycnal Upwelling in the<br>Okhotsk Sea. Journal of Physical Oceanography, 2004, 34, 2327-2341.               | 1.7 | 48        |
| 59 | Seasonal axis migration of the upstream Kuroshio Extension associated with standing oscillations.<br>Journal of Geophysical Research, 2001, 106, 16685-16692.                   | 3.3 | 19        |