
Cecile Martin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3480020/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Full adoption of the most effective strategies to mitigate methane emissions by ruminants can help meet the 1.5 °C target by 2030 but not 2050. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2111294119.	7.1	77
2	Improving robustness and accuracy of predicted daily methane emissions of dairy cows using milk midâ€infrared spectra. Journal of the Science of Food and Agriculture, 2021, 101, 3394-3403.	3.5	14
3	Inhibition of enteric methanogenesis in dairy cows induces changes in plasma metabolome highlighting metabolic shifts and potential markers of emission. Scientific Reports, 2020, 10, 15591.	3.3	19
4	Effect of increasing the proportion of chicory in forage-based diets on intake and digestion by sheep. Animal, 2019, 13, 718-726.	3.3	16
5	Prediction of enteric methane production, yield and intensity of beef cattle using an intercontinental database. Agriculture, Ecosystems and Environment, 2019, 283, 106575.	5.3	57
6	Evaluation of the performance of existing mathematical models predicting enteric methane emissions from ruminants: Animal categories and dietary mitigation strategies. Animal Feed Science and Technology, 2019, 255, 114207.	2.2	21
7	Bacterial direct-fed microbials fail to reduce methane emissions in primiparous lactating dairy cows. Journal of Animal Science and Biotechnology, 2019, 10, 41.	5.3	21
8	Changes in the Rumen Microbiota of Cows in Response to Dietary Supplementation with Nitrate, Linseed, and Saponin Alone or in Combination. Applied and Environmental Microbiology, 2019, 85, .	3.1	25
9	Effects of starch-rich or lipid-supplemented diets that induce milk fat depression on rumen biohydrogenation of fatty acids and methanogenesis in lactating dairy cows. Animal, 2019, 13, 1421-1431.	3.3	19
10	Comparison of 3 methods for estimating enteric methane and carbon dioxide emission in nonlactating cows. Journal of Animal Science, 2018, 96, 1559-1569.	0.5	20
11	Symposium review: Uncertainties in enteric methane inventories, measurement techniques, and prediction models. Journal of Dairy Science, 2018, 101, 6655-6674.	3.4	103
12	Effects of carbohydrate type or bicarbonate addition to grass silage-based diets on enteric methane emissions and milk fatty acid composition in dairy cows. Journal of Dairy Science, 2018, 101, 6085-6097.	3.4	17
13	Prediction of enteric methane production, yield, and intensity in dairy cattle using an intercontinental database. Global Change Biology, 2018, 24, 3368-3389.	9.5	166
14	Linseed plus nitrate in the diet for fattening bulls: effects on methane emission, animal health and residues in offal. Animal, 2018, 12, 501-507.	3.3	13
15	Relative reticulo-rumen pH indicators for subacute ruminal acidosis detection in dairy cows. Animal, 2018, 12, 481-490.	3.3	42
16	Evaluation of sample preparation methods for NMR-based metabolomics of cow milk. Heliyon, 2018, 4, e00856.	3.2	17
17	Effectiveness of Interventions to Modulate the Rumen Microbiota Composition and Function in Pre-ruminant and Ruminant Lambs. Frontiers in Microbiology, 2018, 9, 1273.	3.5	52
18	Short communication: Development of an equation for estimating methane emissions of dairy cows from milk Fourier transform mid-infrared spectra by using reference data obtained exclusively from respiration chambers. Journal of Dairy Science, 2018, 101, 7618-7624.	3.4	38

#	Article	IF	CITATIONS
19	Tea saponin reduced methanogenesis in vitro but increased methane yield in lactating dairy cows. Journal of Dairy Science, 2017, 100, 1845-1855.	3.4	31
20	Effects of bacterial direct-fed microbials on ruminal characteristics, methane emission, and milk fatty acid composition in cows fed high- or low-starch diets. Journal of Dairy Science, 2017, 100, 2637-2650.	3.4	39
21	Associative effects between fresh perennial ryegrass and white clover on dynamics of intake and digestion in sheep. Grass and Forage Science, 2017, 72, 691-699.	2.9	13
22	The Structural and Functional Capacity of Ruminal and Cecal Microbiota in Growing Cattle Was Unaffected by Dietary Supplementation of Linseed Oil and Nitrate. Frontiers in Microbiology, 2017, 8, 937.	3.5	42
23	Dose-response effect of nitrate on hydrogen distribution between rumen fermentation end products: an in vitro approach. Animal Production Science, 2016, 56, 224.	1.3	19
24	Long-term effect of linseed plus nitrate fed to dairy cows on enteric methane emission and nitrate and nitrite residuals in milk. Animal, 2016, 10, 1173-1181.	3.3	34
25	Repeatability of enteric methane determinations from cattle using either the SF6 tracer technique or the GreenFeed system. Animal Production Science, 2016, 56, 238.	1.3	37
26	Increasing linseed supply in dairy cow diets based on hay or corn silage: Effect on enteric methane emission, rumen microbial fermentation, and digestion. Journal of Dairy Science, 2016, 99, 3445-3456.	3.4	66
27	Bioavailability of aflatoxin B1 and ochratoxin A, but not fumonisin B1 or deoxynivalenol, is increased in starch-induced low ruminal pH in nonlactating dairy cows. Journal of Dairy Science, 2016, 99, 9759-9767.	3.4	12
28	Additive methane-mitigating effect between linseed oil and nitrate fed to cattle1. Journal of Animal Science, 2015, 93, 3564-3577.	0.5	95
29	Associative effects between orchardgrass and red clover silages on voluntary intake and digestion in sheep: Evidence of a synergy on digestible dry matter intake1. Journal of Animal Science, 2015, 93, 4967-4976.	0.5	20
30	Nitrate but not tea saponin feed additives decreased enteric methane emissions in nonlactating cows1. Journal of Animal Science, 2015, 93, 5367-5377.	0.5	25
31	Influence of rumen protozoa on methane emission in ruminants: a meta-analysis approach. Animal, 2014, 8, 1816-1825.	3.3	113
32	Effects of dehydrated lucerne and soya bean meal on milk production and composition, nutrient digestion, and methane and nitrogen losses in dairy cows receiving two different forages. Animal, 2014, 8, 420-430.	3.3	18
33	Methane emission of Blackbelly rams consuming whole sugarcane forage compared with Dichanthium sp. hay. Animal Feed Science and Technology, 2014, 190, 30-37.	2.2	7
34	The use of direct-fed microbials for mitigation of ruminant methane emissions: a review. Animal, 2014, 8, 250-261.	3.3	114
35	Effects of incremental amounts of extruded linseed on the milk fatty acid composition of dairy cows receiving hay or corn silage. Journal of Dairy Science, 2013, 96, 6577-6595.	3.4	50
36	Methionine analogues HMB and HMBi increase the abundance of cellulolytic bacterial representatives in the rumen of cattle with no direct effects on fibre degradation. Animal Feed Science and Technology, 2013, 182, 16-24.	2.2	26

#	Article	lF	CITATIONS
37	Methanogens and Methanogenesis in the Rumens and Ceca of Lambs Fed Two Different High-Grain-Content Diets. Applied and Environmental Microbiology, 2013, 79, 1777-1786.	3.1	46
38	Fungal secondary metabolites from Monascus spp. reduce rumen methane production in vitro and in vivo1. Journal of Animal Science, 2013, 91, 848-860.	0.5	44
39	Repeated acidosis challenges and live yeast supplementation shape rumen microbiota and fermentations and modulate inflammatory status in sheep. Animal, 2013, 7, 1910-1920.	3.3	38
40	Rumen protozoa and methanogenesis: not a simple cause–effect relationship. British Journal of Nutrition, 2012, 107, 388-397.	2.3	132
41	Potential use of milk mid-infrared spectra to predict individual methane emission of dairy cows. Animal, 2012, 6, 1694-1701.	3.3	89
42	Effect of release rate of the SF6 tracer on methane emission estimates based on ruminal and breath gas samples. Animal, 2012, 6, 518-525.	3.3	8
43	Behavioural adaptations of sheep to repeated acidosis challenges and effect of yeast supplementation. Animal, 2012, 6, 2011-2022.	3.3	14
44	Rumen microbial and fermentation characteristics are affected differently by bacterial probiotic supplementation during induced lactic and subacute acidosis in sheep. BMC Microbiology, 2012, 12, 142.	3.3	67
45	Comparison of methane production between C3 and C4 grasses and legumes. Animal Feed Science and Technology, 2011, 166-167, 59-64.	2.2	164
46	Dietary linseed and starch supplementation decreases methane production of fattening bulls. Animal Feed Science and Technology, 2011, 166-167, 330-337.	2.2	20
47	Effect of fibre- and starch-rich finishing diets on methanogenic Archaea diversity and activity in the rumen of feedlot bulls. Animal Feed Science and Technology, 2011, 166-167, 113-121.	2.2	61
48	Long-term defaunation increases the abundance of cellulolytic ruminococci and methanogens but does not affect the bacterial and methanogen diversity in the rumen of sheep1. Journal of Animal Science, 2011, 89, 783-791.	0.5	107
49	Enteric methane production and greenhouse gases balance of diets differing in concentrate in the fattening phase of a beef production system1. Journal of Animal Science, 2011, 89, 2518-2528.	0.5	78
50	Experimental feed induction of ruminal lactic, propionic, or butyric acidosis in sheep1. Journal of Animal Science, 2010, 88, 3041-3046.	0.5	42
51	Improved protocol for high-quality Co-extraction of DNA and RNA from rumen digesta. Folia Microbiologica, 2010, 55, 368-372.	2.3	22
52	Microbial ecosystem and methanogenesis in ruminants. Animal, 2010, 4, 1024-1036.	3.3	478
53	Methane mitigation in ruminants: from microbe to the farm scale. Animal, 2010, 4, 351-365.	3.3	650
54	Effects of linseed lipids fed as rolled seeds, extruded seeds or oil on organic matter and crude protein digestion in cows. Animal Feed Science and Technology, 2009, 150, 187-196.	2.2	42

#	Article	IF	CITATIONS
55	Milk fatty acids in dairy cows fed whole crude linseed, extruded linseed, or linseed oil, and their relationship with methane output. Journal of Dairy Science, 2009, 92, 5199-5211.	3.4	248
56	Risk of subacute ruminal acidosis in sheep with separate access to forage and concentrate. Journal of Animal Science, 2009, 87, 3372-3379.	0.5	21
57	Effects of the forage-to-concentrate ratio of the diet on feeding behaviour in young Blond d'Aquitaine bulls. Animal, 2008, 2, 1682-1691.	3.3	22
58	Changes in methane emission and rumen fermentation parameters induced by refaunation in sheep. Australian Journal of Experimental Agriculture, 2008, 48, 69.	1.0	60
59	Methane output and diet digestibility in response to feeding dairy cows crude linseed, extruded linseed, or linseed oil1. Journal of Animal Science, 2008, 86, 2642-2650.	0.5	281
60	PCR-DGGE analysis reveals a distinct diversity in the bacterial population attached to the rumen epithelium. Animal, 2007, 1, 939-944.	3.3	81
61	Estimating the greenhouse gas fluxes of European grasslands with a process-based model: 1. Model evaluation from in situ measurements. Global Biogeochemical Cycles, 2007, 21, .	4.9	36
62	Effects of stocking rate on methane and carbon dioxide emissions from grazing cattle. Agriculture, Ecosystems and Environment, 2007, 121, 30-46.	5.3	102
63	The role of grazing management for the net biome productivity and greenhouse gas budget (CO2, N2O) Tj ETQq1	1.9.7843	14 rgBT /0 205
64	Full accounting of the greenhouse gas (CO2, N2O, CH4) budget of nine European grassland sites. Agriculture, Ecosystems and Environment, 2007, 121, 121-134.	5.3	409
65	Dose effect of live yeasts on rumen microbial communities and fermentations during butyric latent acidosis in sheep: new type of interaction. Animal Science, 2006, 82, 829-836.	1.3	52
66	Protozoa involved in butyric rather than lactic fermentative pattern during latent acidosis in sheep. Reproduction, Nutrition, Development, 2004, 44, 195-206.	1.9	62
67	Effect of Corn Hybrid and Chop Length of Whole-Plant Corn Silage on Digestion and Intake by Dairy Cows. Journal of Dairy Science, 2004, 87, 1298-1309.	3.4	34
68	Methane emissions by Charolais cows grazing a monospecific pasture of timothy at four stages of maturity. Canadian Journal of Animal Science, 2003, 83, 769-777.	1.5	79
69	Ruminal fermentative parameters and blood acido-basic balance changes during the onset and recovery of induced latent acidosis in sheep. Animal Research, 2003, 52, 513-530.	0.6	35
70	Comparison of non-tracer and tracer methods for determination of volatile fatty acid production rate in the rumen of sheep fed on two levels of intake. British Journal of Nutrition, 2001, 86, 331-340.	2.3	15
71	Effect of composition of ruminally-infused short-chain fatty acids on net fluxes of nutrients across portal-drained viscera in underfed ewes. British Journal of Nutrition, 2000, 83, 521-531.	2.3	33
72	Effect of Barley Supplement on Microbial Fibrolytic Enzyme Activities and Cell Wall Degradation Rate in the Rumen. Journal of the Science of Food and Agriculture, 1996, 72, 235-242.	3.5	22

#	Article	IF	CITATIONS
73	Influence of barley and buffer supplements on quantitative aspects of Ruminal fiber digestion of cows. Archiv Fur Tierernahrung, 1996, 49, 203-211.	0.3	2
74	Variations in mass and enzyme activity of rumen microorganisms: Effect of barley and buffer supplements. Journal of the Science of Food and Agriculture, 1995, 67, 407-413.	3.5	68
75	Enzyme activities of rumen solidâ€adherent microorganisms in chronically underfed ewes. Journal of the Science of Food and Agriculture, 1994, 65, 423-428.	3.5	12
76	Isolation and characteristics of the protozoal and bacterial fractions from bovine ruminal contents1. Journal of Animal Science, 1994, 72, 2962-2968.	0.5	82
77	Postprandial variations in the activity of polysaccharide-degrading enzymes of fluid- and particle-associated ruminal microbial populations. Current Microbiology, 1993, 27, 223-228.	2.2	32
78	Influence du repas sur l'activité enzymatique des différentes populations microbiennes du rumen. Animal Research, 1993, 42, 181-182.	0.6	0
79	Use of Yeast Probiotics in Ruminants: Effects and Mechanisms of Action on Rumen pH, Fibre Degradation, and Microbiota According to the Diet. , 0, , .		26