Gary Davidson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3479686/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assembly of Multi‧pheroid Cellular Architectures by Programmable Droplet Merging. Advanced Materials, 2021, 33, e2006434.	21.0	42
2	Quantitative Profiling of WNT-3A Binding to All Human Frizzled Paralogues in HEK293 Cells by NanoBiT/BRET Assessments. ACS Pharmacology and Translational Science, 2021, 4, 1235-1245.	4.9	15
3	LRPs in WNT Signalling. Handbook of Experimental Pharmacology, 2021, 269, 45-73.	1.8	17
4	Cell-based high-throughput screening of cationic polymers for efficient DNA and siRNA delivery. Acta Biomaterialia, 2020, 115, 410-417.	8.3	8
5	eGFP-tagged Wnt-3a enables functional analysis of Wnt trafficking and signaling and kinetic assessment of Wnt binding to full-length Frizzled. Journal of Biological Chemistry, 2020, 295, 8759-8774.	3.4	26
6	Development of new self-assembled cationic amino liposomes for efficient gene delivery. Biomaterials Science, 2020, 8, 3021-3025.	5.4	13
7	Measuring ligand-cell surface receptor affinities with axial line-scanning fluorescence correlation spectroscopy. ELife, 2020, 9, .	6.0	27
8	Fam83F induces p53 stabilisation and promotes its activity. Cell Death and Differentiation, 2019, 26, 2125-2138.	11.2	16
9	Single-Tailed Lipidoids Enhance the Transfection Activity of Their Double-Tailed Counterparts. ACS Combinatorial Science, 2016, 18, 43-50.	3.8	9
10	Dual-color dual-focus line-scanning FCS for quantitative analysis of receptor-ligand interactions in living specimens. Scientific Reports, 2015, 5, 10149.	3.3	28
11	Combinatorial synthesis and high throughput screening of lipidoids for gene delivery. Journal of Controlled Release, 2015, 213, e134.	9.9	4
12	Study of Receptor-Ligand Interactions in Living Specimens by using Dual-Color Dual-Focus Line-Scanning FCS. Biophysical Journal, 2015, 108, 324a.	0.5	0
13	Expression screening using a Medaka cDNA library identifies evolutionarily conserved regulators of the p53/Mdm2 pathway. BMC Biotechnology, 2015, 15, 92.	3.3	5
14	TRIM25 has a dual function in the p53/Mdm2 circuit. Oncogene, 2015, 34, 5729-5738.	5.9	71
15	ScreenFect A: an efficient and low toxic liposome for gene delivery to mesenchymal stem cells. International Journal of Pharmaceutics, 2015, 488, 1-11.	5.2	17
16	CD44 functions in Wnt signaling by regulating LRP6 localization and activation. Cell Death and Differentiation, 2015, 22, 677-689.	11.2	127
17	In-vivo analysis of formation and endocytosis of the Wnt∫î²-Catenin signaling complex in zebrafish embryos. Journal of Cell Science, 2014, 127, 3970-82.	2.0	61
18	Tyrosine phosphorylation of <scp>LRP</scp> 6 by Src and Fer inhibits Wnt/β atenin signalling. EMBO Reports, 2014, 15, 1254-1267.	4.5	34

GARY DAVIDSON

#	Article	IF	CITATIONS
19	In vivo analysis of formation and endocytosis of the Wnt/β-Catenin signaling complex in zebrafish embryos. Development (Cambridge), 2014, 141, e1907-e1907.	2.5	2
20	Combinatorial Synthesis and High-Throughput Screening of Alkyl Amines for Nonviral Gene Delivery. Bioconjugate Chemistry, 2013, 24, 1543-1551.	3.6	23
21	A Practical Design Approach including Resistance Predictions for Medium-speed Catamarans. Ship Technology Research, 2013, 60, 4-12.	2.5	4
22	Wnt3 and Wnt3a are required for induction of the mid-diencephalic organizer in the caudal forebrain. Neural Development, 2012, 7, 12.	2.4	37
23	A biomimetic lipid library for gene delivery through thiol-yne click chemistry. Biomaterials, 2012, 33, 8160-8166.	11.4	53
24	Emerging links between CDK cell cycle regulators and Wnt signaling. Trends in Cell Biology, 2010, 20, 453-460.	7.9	143
25	The cell cycle and Wnt. Cell Cycle, 2010, 9, 1667-1668.	2.6	17
26	Cell Cycle Control of Wnt Receptor Activation. Developmental Cell, 2009, 17, 788-799.	7.0	238
27	Functional interactions between anthrax toxin receptors and the WNT signalling protein LRP6. Cellular Microbiology, 2008, 10, 2509-2519.	2.1	38
28	Wnt Induces LRP6 Signalosomes and Promotes Dishevelled-Dependent LRP6 Phosphorylation. Science, 2007, 316, 1619-1622.	12.6	774
29	Casein kinase 1 \hat{I}^3 couples Wnt receptor activation to cytoplasmic signal transduction. Nature, 2005, 438, 867-872.	27.8	533
30	Dkk1 and noggin cooperate in mammalian head induction. Genes and Development, 2003, 17, 2239-2244.	5.9	84
31	Kremen proteins interact with Dickkopf1 to regulate anteroposterior CNS patterning. Development (Cambridge), 2002, 129, 5587-5596.	2.5	128
32	Kremen proteins are Dickkopf receptors that regulate Wnt/β-catenin signalling. Nature, 2002, 417, 664-667.	27.8	947
33	Formin defines a large family of morphoregulatory genes and functions in establishment of the polarising region. Cell and Tissue Research, 1999, 296, 85-93.	2.9	62
34	Mel 1a Melatonin Receptor Expression Is Regulated by Protein Kinase C and an Additional Pathway Addressed by the Protein Kinase C Inhibitor Ro 31–8220 in Ovine Pars Tuberalis Cells*. Endocrinology, 1998, 139, 163-171.	2.8	18
35	Rearrangements of the Cytoskeleton and Cell Contacts Induce Process Formation during Differentiation of Conditionally Immortalized Mouse Podocyte Cell Lines. Experimental Cell Research, 1997, 236, 248-258.	2.6	810
36	Differential regulation of melatonin receptors in sheep, chicken and lizard brains by cholera and pertussis toxins and guanine nucleotides. Neurochemistry International, 1996, 28, 259-269.	3.8	14

GARY DAVIDSON

#	Article	IF	CITATIONS
37	Melatonin Receptors Couple Through a Cholera Toxin-Sensitive Mechanism to Inhibit Cyclic AMP in the Ovine Pituitary. Journal of Neuroendocrinology, 1995, 7, 361-369.	2.6	37
38	p72, a Marker Protein for Melatonin Action in Ovine Pars tuberalis Cells: Its Regulation by Protein Kinase A and Protein Kinase C and Differential Secretion Relative to Prolactin. Neuroendocrinology, 1994, 59, 325-335.	2.5	24
39	Cloning and expression of a new member of the melanocyte-stimulating hormone receptor family. Journal of Molecular Endocrinology, 1994, 12, 203-213.	2.5	94
40	Phospholipases and melatonin signal transduction in the ovine pars tuberalis. Molecular and Cellular Endocrinology, 1994, 99, 73-79.	3.2	31
41	Melatonin Regulates the Synthesis and Secretion of Several Proteins by Pars Tuberalis Cells of the Ovine Pituitary. Journal of Neuroendocrinology, 1992, 4, 557-563.	2.6	44
42	Ultrastructure of melatonin-responsive cells in the ovine pars tuberalis. Cell and Tissue Research, 1991, 263, 529-534.	2.9	41
43	Interaction of Forskolin and Melatonin on Cyclic AMP Generation in Pars Tuberalis Cells of Ovine Pituitary. Journal of Neuroendocrinology, 1991, 3, 497-501.	2.6	29
44	Intracellular signalling in the ovine pars tuberalis: an investigation using aluminium fluoride and melatonin. Journal of Molecular Endocrinology, 1991, 7, 137-144.	2.5	36
45	Both Pertussis Toxin-Sensitive and Insensitive G-Proteins Link Melatonin Receptor to Inhibition of Adenylate Cyclase in the Ovine Pars Tuberalis. Journal of Neuroendocrinology, 1990, 2, 773-776.	2.6	86
46	Guanine Nucleotides Regulate the Affinity of Melatonin Receptors on the Ovine Pars tuberalis. Neuroendocrinology, 1989, 50, 359-362.	2.5	116
47	MELATONIN INHIBITS CYCLIC AMP PRODUCTION IN CULTURED OVINE PARS TUBERALIS CELLS. Journal of Molecular Endocrinology, 1989, 3, R5-R8.	2.5	115
48	Evidence for Dual Adrenergic Receptor Regulation of Ovine Pineal Function. Journal of Pineal Research, 1989, 7, 175-183.	7.4	14
49	Neuropeptide Y (NPY) Innervation of the Ovine Pineal Gland. Journal of Pineal Research, 1989, 7, 345-353.	7.4	18
50	Melatonin Receptors on Ovine Pars Tuberalis: Characterization and Autoradiographicai Localization. Journal of Neuroendocrinology, 1989, 1, 1-4.	2.6	173
51	Melatonin Receptor Sites in the Syrian Hamster Brain and Pituitary. Localization and Characterization Using [125]]lodomelatonin. Journal of Neuroendocrinology, 1989, 1, 315-320.	2.6	118