
Egill Erlendsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3479586/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Feasting in Viking Age Iceland: sustaining a chiefly political economy in a marginal environment. Antiquity, 2013, 87, 150-165.	1.0	68
2	Erosional Effects on Terrestrial Resources over the last Millennium in Reykjanes, Southwest Iceland. Quaternary Research, 2010, 73, 20-32.	1.7	57
3	Lake sediment evidence for late Holocene climate change and landscape erosion in western Iceland. Journal of Paleolimnology, 2009, 42, 413-426.	1.6	45
4	The onset of the palaeoanthropocene in Iceland: Changes in complex natural systems. Holocene, 2015, 25, 1662-1675.	1.7	40
5	1000 years of environmental change and human impact at Stóra-Mörk, southern Iceland: A multiproxy study of a dynamic and vulnerable landscape. Holocene, 2011, 21, 979-995.	1.7	38
6	Climate change and human impact in a sensitive ecosystem: the Holocene environment of the Northwest Icelandic highland margin. Boreas, 2016, 45, 715-728.	2.4	37
7	Vegetational response to human colonisation of the coastal and volcanic environments of Ketilsstaðir, southern Iceland. Quaternary Research, 2009, 72, 174-187.	1.7	36
8	The palaeoecology of a high status Icelandic farm. Environmental Archaeology, 2007, 12, 187-206.	1.2	31
9	Life on the periphery is tough: Vegetation in Northwest Iceland and its responses to early-Holocene warmth and later climate fluctuations. Holocene, 2015, 25, 1437-1453.	1.7	31
10	The timing and causes of the final pre-settlement expansion of Betula pubescens in Iceland. Holocene, 2009, 19, 1083-1091.	1.7	27
11	Palynology supports â€~ <scp>O</scp> ld <scp>N</scp> orse' introductions to the flora of <scp>G</scp> reenland. Journal of Biogeography, 2013, 40, 1119-1130.	3.0	23
12	Soil evidence for historical human-induced land degradation in West Iceland. Applied Geochemistry, 2011, 26, S28-S31.	3.0	21
13	Landscape Change, Land Use, and Occupation Patterns Inferred from Two Palaeoenvironmental Datasets from the Mosfell Valley, SW Iceland. Cursor Mundi, 2014, , 181-192.	0.0	21
14	Effects of the Hekla 4 tephra on vegetation in Northwest Iceland. Vegetation History and Archaeobotany, 2017, 26, 389-402.	2.1	21
15	Landscape change in the Icelandic highland: A long-term record of the impacts of land use, climate and volcanism. Quaternary Science Reviews, 2020, 240, 106363.	3.0	21
16	Ancient sedimentary DNA shows rapid post-glacial colonisation of Iceland followed by relatively stable vegetation until the Norse settlement (Landnám) AD 870. Quaternary Science Reviews, 2021, 259, 106903.	3.0	21
17	Holocene environmental change and development of the nutrient budget of histosols in North Iceland. Plant and Soil, 2017, 418, 437-457.	3.7	16
18	Cereal cultivation as a correlate of high social status in medieval Iceland. Vegetation History and Archaeobotany, 2018, 27, 679-696.	2.1	16

EGILL ERLENDSSON

#	Article	IF	CITATIONS
19	Landscapes of Contrast in Viking Age Iceland and the Faroe Islands. Landscapes (United Kingdom), 2005, 6, 63-81.	0.4	15
20	The weathering of volcanic tephra and how they impact histosol development. An example from South East Iceland. Catena, 2019, 172, 634-646.	5.0	15
21	A Bayesian approach to linking archaeological, paleoenvironmental and documentary datasets relating to the settlement of Iceland (Landnám). Holocene, 2018, 28, 19-33.	1.7	11
22	Impacts of climate, tephra and land use upon Holocene landscape stability in Northwest Iceland. Geomorphology, 2018, 322, 117-131.	2.6	11
23	Weathering of tephra and the formation of pedogenic minerals in young Andosols, South East Iceland. Catena, 2021, 198, 105030.	5.0	11
24	Pollen, Plague & Protestants: The Medieval Monastery of Þingeyrar (Þingeyraklaustur) in Northern Iceland. Environmental Archaeology, 2022, 27, 193-210.	1.2	9
25	An Icelandic terrestrial record of North Atlantic cooling c. 8800–8100 cal. yr BP. Quaternary Science Reviews, 2018, 197, 246-256.	3.0	9
26	Tephra deposits and carbon dynamics in peatlands of a volcanic region: Lessons from the Hekla 4 eruption. Land Degradation and Development, 2021, 32, 654-669.	3.9	6
27	The multiâ€component Hekla × Tephra, Iceland: a complex widespread midâ€Holocene tephra layer. Journal of Quaternary Science, 2020, 35, 410-421.	2.1	4
28	Andic Soil Properties and Tephra Layers Hamper C Turnover in Icelandic Peatlands. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006433.	3.0	4
29	Landnám, Land Use and Landscape Change at Kagaðarhóll in Northwest Iceland. Environmental Archaeology, 0, , 1-17.	1.2	3
30	The vegetation and land use histories of two farms in Iceland: settlement, monasticism, and tenancy. Vegetation History and Archaeobotany, 2022, 31, 395-414.	2.1	3
31	The roles of agriculture and climate in land degradation in southeast Iceland AD 1700–1900. Geografiska Annaler, Series A: Physical Geography, 2021, 103, 132-150.	1.5	0
32	Environmental Challenges for the Medieval North Atlantic World. Environmental Archaeology, 2022, 27, 123-126.	1.2	0
33	The impact of environmental factors on early stage Andosol development south of Vatnajökull, Iceland. European Journal of Soil Science, 2022, 73, .	3.9	Ο